A new short-term load forecasting approach using self-organizing fuzzy ARMAX models

被引:94
|
作者
Yang, HT [1 ]
Huang, CM
机构
[1] Chung Yuan Christian Univ, Dept Elect Engn, Chungli 320, Taiwan
[2] Kaoyuan Jr Coll TEchnol & Commerce, Dept Elect Engn, Kaohsiung 821, Taiwan
关键词
fuzzy ARMAX model; evolutionary optimization; short term load forecasting; artificial neural networks;
D O I
10.1109/59.651639
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new self-organizing model of fuzzy autoregressive moving average with exogenous input variables (FARMAX) for one day ahead hourly load forecasting of power systems, To achieve the purpose of self-organizing the FARMAX model, identification of the fuzzy model is formulated as a combinatorial optimization problem. Then a combined use of heuristics and evolutionary programming (EP) scheme is relied on to solve the problem of determining optimal number of input variables, best partition of fuzzy spaces and associated fuzzy membership functions. The proposed approach is verified by using diverse types of practical load and weather data for Taiwan Power (Taipower) systems. Comparisons are made of forecasting errors with the existing ARMAX model implemented by commercial SAS package and artificial neural networks (ANNs) method.
引用
收藏
页码:217 / 225
页数:9
相关论文
共 50 条
  • [31] Standardization of Short-Term Load Forecasting Models
    Lopez, M.
    Valero, S.
    Senabre, C.
    Aparicio, J.
    Gabaldon, A.
    [J]. 2012 9TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM), 2012,
  • [32] Probabilistic short-term load forecasting models based on a parametric approach
    Fernández-Jiménez, L.A.
    Terreros-Olarte, S.
    Capellán-Villacián, C.
    Falces, A.
    García-Garrido, E.
    Lara-Santillán, P.M.
    Mendoza-Villena, M.
    Zorzano-Alba, E.
    Zorzano-Santamaría, P.J.
    [J]. Renewable Energy and Power Quality Journal, 2024, 22 (05): : 101 - 106
  • [33] Fuzzy short-term electric load forecasting using Kalman filter
    Al-Hamadi, HM
    Soliman, SA
    [J]. IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2006, 153 (02) : 217 - 227
  • [34] Prediction Intervals for Short-Term Load Forecasting Neuro-Fuzzy Models
    Bartkiewicz, Witold
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (10B): : 284 - 287
  • [35] A new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting
    Wang, Bo
    Tai, Neng-ling
    Zhai, Hai-qing
    Ye, Jian
    Zhu, Jia-dong
    Qi, Liang-bo
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (10) : 1679 - 1685
  • [36] Identification of ARMAX model for short term load forecasting: An evolutionary programming approach
    Yang, HT
    Huang, CM
    Huang, CL
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (01) : 403 - 408
  • [37] Optimal fuzzy inference for short-term load forecasting
    Mori, H
    Kobayashi, H
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1996, 11 (01) : 390 - 396
  • [38] A fuzzy inference model for short-term load forecasting
    Mamlook, Rustum
    Badran, Omar
    Abdulhadi, Emad
    [J]. ENERGY POLICY, 2009, 37 (04) : 1239 - 1248
  • [39] Fuzzy Inference Model for Short-Term Load Forecasting
    Panda, Saroj Kumar
    Ray, Papia
    [J]. Journal of The Institution of Engineers (India): Series B, 2022, 103 (06) : 1939 - 1948
  • [40] Fuzzy Inference Model for Short-Term Load Forecasting
    Panda S.K.
    Ray P.
    [J]. Journal of The Institution of Engineers (India): Series B, 2022, 103 (6) : 1939 - 1948