Singular solutions to a semilinear biharmonic equation with a general critical nonlinearity
被引:4
|
作者:
Frank, Rupert L.
论文数: 0引用数: 0
h-index: 0
机构:
Ludwig Maximilans Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
CALTECH, Math Dept, Mail Code 253-37,1200 E Calif Blvd, Pasadena, CA 91125 USALudwig Maximilans Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
Frank, Rupert L.
[1
,2
]
Koenig, Tobias
论文数: 0引用数: 0
h-index: 0
机构:
Ludwig Maximilans Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, GermanyLudwig Maximilans Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
Koenig, Tobias
[1
]
机构:
[1] Ludwig Maximilans Univ Munchen, Math Inst, Theresienstr 39, D-80333 Munich, Germany
[2] CALTECH, Math Dept, Mail Code 253-37,1200 E Calif Blvd, Pasadena, CA 91125 USA
Biharmonic equation;
singular solutions;
method of moving planes;
SOBOLEV;
D O I:
10.4171/RLM/871
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider positive solutions u of the semilinear biharmonic equation Delta(2)u = vertical bar x vertical bar(n+4/2) g(vertical bar x vertical bar(n-4/2)u) in R-n\{0} with non-removable singularities at the origin. Under natural assumptions on the nonlinearity g, we show that vertical bar x vertical bar(n-4/2)u is a periodic function of ln vertical bar x vertical bar and we classify all such solutions.