On the Design of Generalized LDPC Codes with Component BCJR Decoding

被引:0
|
作者
Liu, Yanfang [1 ]
Olmos, Pablo M. [2 ,3 ]
Mitchell, David G. M. [1 ]
机构
[1] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
[2] Univ Carlos III Madrid, Madrid, Spain
[3] Gregorio Maranon Hlth Res Inst, Madrid, Spain
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Generalized low-density parity-check codes; BCJR decoding; trellis of linear block codes; TRELLIS;
D O I
10.1109/GLOBECOM42002.2020.9322143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generalized low-density parity-check (GLDPC) codes, where the single parity-check (SPC) nodes are replaced by generalized constraint (GC) nodes, are known to offer a reduced gap to capacity when compared with conventional LDPC codes, while also maintaining linear growth of minimum distance. However, for certain classes of practical GLDPC codes, there remains a gap to capacity even when utilizing blockwise decoding algorithm at GC nodes. In this work, we propose to optimize the design of GLDPC codes where the GC nodes are decoded with a trellis-based bit-wise Bahl-Cocke-Jelinek-Raviv (BCJR) component decoding algorithm. We analyze the asymptotic threshold behavior of GLDPC codes and determine the optimal proportion of the GC nodes in the GLDPC Tanner graph. We show significant performance improvements compared to existing designs with the same order of decoding complexity.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Computationally efficient decoding of LDPC codes
    Cavus, E.
    Daneshrad, B.
    ELECTRONICS LETTERS, 2009, 45 (18) : 946 - 947
  • [32] Iterative list decoding of LDPC codes
    Hoholdt, Tom
    Justesen, Jorn
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 18 - +
  • [33] Gradient projection decoding of LDPC codes
    Kasparis, Christos
    Evans, Barry G.
    IEEE COMMUNICATIONS LETTERS, 2007, 11 (03) : 279 - 281
  • [34] A Novel Design of Spatially Coupled LDPC Codes for Sliding Window Decoding
    Zhu, Min
    Mitchell, David G. M.
    Lentmaier, Michael
    Costello, Daniel J., Jr.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 473 - 478
  • [35] Design and Decoding of Irregular LDPC Codes Based on Discrete Message Passing
    Meidlinger, Michael
    Matz, Gerald
    Burg, Andreas
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (03) : 1329 - 1343
  • [36] Sparse Representations for Codes and the Hardness of Decoding LDPC Codes
    Santhi, Nandakishore
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 290 - 294
  • [37] Multiple component codes based generalized LDPC codes for high-speed optical transport
    Djordjevic, Ivan B.
    Wang, Ting
    OPTICS EXPRESS, 2014, 22 (14): : 16694 - 16705
  • [38] Generalized Mutual Information-Maximizing Quantized Decoding of LDPC Codes With Layered Scheduling
    Kang, Peng
    Cai, Kui
    He, Xuan
    Li, Shuangyang
    Yuan, Jinhong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (07) : 7258 - 7273
  • [39] Reduced complexity sliding window BCJR decoding algorithms for turbo codes
    Gwak, J
    Shin, SK
    Kim, HM
    CRYPTOGRAPHY AND CODING, 1999, 1746 : 179 - 184
  • [40] Doubly generalized LDPC codes
    Wang, Yige
    Fossorier, Marc
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 669 - +