On the Design of Generalized LDPC Codes with Component BCJR Decoding

被引:0
|
作者
Liu, Yanfang [1 ]
Olmos, Pablo M. [2 ,3 ]
Mitchell, David G. M. [1 ]
机构
[1] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
[2] Univ Carlos III Madrid, Madrid, Spain
[3] Gregorio Maranon Hlth Res Inst, Madrid, Spain
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Generalized low-density parity-check codes; BCJR decoding; trellis of linear block codes; TRELLIS;
D O I
10.1109/GLOBECOM42002.2020.9322143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generalized low-density parity-check (GLDPC) codes, where the single parity-check (SPC) nodes are replaced by generalized constraint (GC) nodes, are known to offer a reduced gap to capacity when compared with conventional LDPC codes, while also maintaining linear growth of minimum distance. However, for certain classes of practical GLDPC codes, there remains a gap to capacity even when utilizing blockwise decoding algorithm at GC nodes. In this work, we propose to optimize the design of GLDPC codes where the GC nodes are decoded with a trellis-based bit-wise Bahl-Cocke-Jelinek-Raviv (BCJR) component decoding algorithm. We analyze the asymptotic threshold behavior of GLDPC codes and determine the optimal proportion of the GC nodes in the GLDPC Tanner graph. We show significant performance improvements compared to existing designs with the same order of decoding complexity.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] GENERALIZED SERIAL SCHEDULES FOR ITERATIVE DECODING OF LDPC CODES
    Presman, Noam
    Sharon, Eran
    Litsyn, Simon
    2008 IEEE 25TH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, VOLS 1 AND 2, 2008, : 105 - 109
  • [2] A Class of Generalized LDPC Codes with Fast Parallel Decoding Algorithms
    Wang, Xiuni
    Ma, Xiao
    IEEE COMMUNICATIONS LETTERS, 2009, 13 (07) : 531 - 533
  • [3] Neural Min-Sum Decoding for Generalized LDPC Codes
    Kwak, Hee-Youl
    Kim, Jae-Won
    Kim, Yongjune
    Kim, Sang-Hyo
    No, Jong-Seon
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (12) : 2841 - 2845
  • [4] Generalized and Doubly Generalized LDPC Codes With Random Component Codes for the Binary Erasure Channel
    Paolini, Enrico
    Fossorier, Marc P. C.
    Chiani, Marco
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) : 1651 - 1672
  • [5] The Design of Optimized Fast Decoding Protograph LDPC Codes
    Thuy Van Nguyen
    Nguyen, Hieu T.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR COMMUNICATIONS (ATC), 2016, : 282 - 286
  • [6] Comparative analysis of BCJR decoding algorithm of convolutional codes
    Shpylka, O. O.
    Jurkov, I. O.
    Zhuk, S. Ya.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2010, (41): : 47 - 51
  • [7] Analysis of Binary and Ternary Message Passing Decoding for Generalized LDPC Codes
    Ben Yacoub, Emna
    Liva, Gianluigi
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (09) : 5078 - 5092
  • [8] Stochastic decoding of LDPC codes
    Tehrani, Saeed Sharifi
    Gross, Warren J.
    Mannor, Shie
    IEEE COMMUNICATIONS LETTERS, 2006, 10 (10) : 716 - 718
  • [9] Proximal Decoding for LDPC Codes
    Wadayama, Tadashi
    Takabe, Satoshi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (03) : 359 - 367
  • [10] Decoding and Design of LDPC Codes for High-Order Modulations
    Guan, Wu
    Xiang, Haige
    WIRELESS PERSONAL COMMUNICATIONS, 2011, 56 (02) : 237 - 253