Co-GCN for Multi-View Semi-Supervised Learning

被引:0
|
作者
Li, Shu [1 ]
Li, Wen-Tao [1 ]
Wang, Wei [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many real-world applications, the data have several disjoint sets of features and each set is called as a view. Researchers have developed many multi-view learning methods in the past decade. In this paper, we bring Graph Convolutional Network (GCN) into multi-view learning and propose a novel multi-view semi-supervised learning method Co-GCN by adaptively exploiting the graph information from the multiple views with combined Laplacians. Experimental results on real-world data sets verify that Co-GCN can achieve better performance compared with state-of-the-art multi-view semi-supervised methods.
引用
收藏
页码:4691 / 4698
页数:8
相关论文
共 50 条
  • [1] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [2] Multi-view Learning for Semi-supervised Sentiment Classification
    Su, Yan
    Li, Shoushan
    Ju, Shengfeng
    Zhou, Guodong
    Li, Xiaojun
    [J]. 2012 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2012), 2012, : 13 - 16
  • [3] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    [J]. NEUROCOMPUTING, 2016, 208 : 136 - 142
  • [4] A Multi-view Regularization Method for Semi-supervised Learning
    Wang, Jiao
    Luo, Siwei
    Li, Yan
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 444 - 449
  • [5] Research on multi-view semi-supervised learning algorithm based on Co-learning
    Wang, Xing-Qi
    [J]. PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 1276 - 1280
  • [6] Co-embedding: a semi-supervised multi-view representation learning approach
    Jia, Xiaodong
    Jing, Xiao-Yuan
    Zhu, Xiaoke
    Cai, Ziyun
    Hu, Chang-Hui
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (06): : 4437 - 4457
  • [7] Co-embedding: a semi-supervised multi-view representation learning approach
    Xiaodong Jia
    Xiao-Yuan Jing
    Xiaoke Zhu
    Ziyun Cai
    Chang-Hui Hu
    [J]. Neural Computing and Applications, 2022, 34 : 4437 - 4457
  • [8] Fast Multi-View Semi-Supervised Learning With Learned Graph
    Zhang, Bin
    Qiang, Qianyao
    Wang, Fei
    Nie, Feiping
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 286 - 299
  • [9] SMGCL: Semi-supervised Multi-view Graph Contrastive Learning
    Zhou, Hui
    Gong, Maoguo
    Wang, Shanfeng
    Gao, Yuan
    Zhao, Zhongying
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [10] Multi-view semi-supervised learning with adaptive graph fusion
    Qiang, Qianyao
    Zhang, Bin
    Nie, Feiping
    Wang, Fei
    [J]. NEUROCOMPUTING, 2023, 557