Non-commutative Poisson algebra structures on affine Kac-Moody algebras

被引:20
|
作者
Kubo, F [1 ]
机构
[1] Kyushu Inst Technol, Dept Math, Kitakyushu, Fukuoka 804, Japan
[2] Univ Penn, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/S0022-4049(96)00141-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie structure together with the Leibniz law. The non-commutative Poisson algebra structures on the infinite-dimensional algebras are studied. We show that these structures are standard on the poset subalgebras of the associative algebra of all endomorphisms of the countable-dimensional vector space. These structures on Kac-Moody algebras of affine type are determined. It is shown that the associative products on the derived Lie ideals are trivial, and the associative product action of the scaling elements are fully described. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:267 / 286
页数:20
相关论文
共 50 条
  • [31] Geometric realizations of affine Kac-Moody algebras
    Futorny, Vyacheslav
    Krizka, Libor
    Somberg, Petr
    JOURNAL OF ALGEBRA, 2019, 528 : 177 - 216
  • [32] A Characterization of Affine Kac-Moody Lie Algebras
    Bruce N. Allison
    Stephen Berman
    Yun Gao
    Arturo Pianzola
    Communications in Mathematical Physics, 1997, 185 : 671 - 688
  • [33] A CLASS OF REPRESENTATIONS OF AFFINE KAC-MOODY ALGEBRAS
    CAPPS, RH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21): : 4727 - 4738
  • [34] New representations of affine Kac-Moody algebras
    Cai, Yan-An
    Tan, Haijun
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2020, 547 : 95 - 115
  • [35] QUANTUM AFFINE MODULES FOR NON-TWISTED AFFINE KAC-MOODY ALGEBRAS
    Futorny, V.
    Hartwig, J. T.
    Wilson, E. A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (12) : 5159 - 5171
  • [36] REPRESENTATIONS OF AFFINE KAC-MOODY ALGEBRAS AND THE AFFINE SCALAR PRODUCT
    CAPPS, RH
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (08) : 1853 - 1858
  • [37] Affine Kac-Moody algebras graded by affine root systems
    Nervi, J
    JOURNAL OF ALGEBRA, 2002, 253 (01) : 50 - 99
  • [38] STRING VERTEX OPERATOR AND AFFINE KAC-MOODY ALGEBRA
    YAN, J
    HU, SK
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1991, 16 (03) : 373 - 376
  • [39] Representations of Involutory Subalgebras of Affine Kac-Moody Algebras
    Kleinschmidt, Axel
    Koehl, Ralf
    Lautenbacher, Robin
    Nicolai, Hermann
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 392 (01) : 89 - 123
  • [40] Affine Kac-Moody algebras, integrable systems and their deformations
    Frenkel, E
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 21 - 32