Non-commutative Poisson algebra structures on affine Kac-Moody algebras

被引:20
|
作者
Kubo, F [1 ]
机构
[1] Kyushu Inst Technol, Dept Math, Kitakyushu, Fukuoka 804, Japan
[2] Univ Penn, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/S0022-4049(96)00141-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie structure together with the Leibniz law. The non-commutative Poisson algebra structures on the infinite-dimensional algebras are studied. We show that these structures are standard on the poset subalgebras of the associative algebra of all endomorphisms of the countable-dimensional vector space. These structures on Kac-Moody algebras of affine type are determined. It is shown that the associative products on the derived Lie ideals are trivial, and the associative product action of the scaling elements are fully described. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:267 / 286
页数:20
相关论文
共 50 条
  • [1] Commutative post-Lie algebra structures on Kac-Moody algebras
    Burde, Dietrich
    Zusmanovich, Pasha
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) : 5218 - 5226
  • [2] SUBJOININGS OF AFFINE KAC-MOODY ALGEBRAS
    LENG, X
    PATERA, J
    SHARP, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15): : 3397 - 3407
  • [3] Varieties of affine Kac-Moody algebras
    Zaitsev, MV
    MATHEMATICAL NOTES, 1997, 62 (1-2) : 80 - 86
  • [4] Varieties of affine Kac-Moody algebras
    M. V. Zaitsev
    Mathematical Notes, 1997, 62 : 80 - 86
  • [5] Tubular algebras and affine Kac-Moody algebras
    Zheng-xin CHEN & Ya-nan LIN School of Mathematics and Computer Science
    School of Mathematical Sciences
    Science in China(Series A:Mathematics), 2007, (04) : 521 - 532
  • [6] Tubular algebras and affine Kac-Moody algebras
    Chen, Zheng-an
    Lin, Ya-nan
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (04): : 521 - 532
  • [7] AUTOMORPHISMS OF AFFINE KAC-MOODY ALGEBRAS
    BAUSCH, J
    TITS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (11): : 409 - 412
  • [8] Characters of affine Kac-Moody algebras
    Hussin, A
    King, RC
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 162 - 166
  • [9] Tubular algebras and affine Kac-Moody algebras
    Zheng-xin Chen
    Ya-nan Lin
    Science in China Series A: Mathematics, 2007, 50 : 521 - 532
  • [10] Identities of affine Kac-Moody algebras
    Zaicev, MV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1996, (02): : 33 - 36