Comparative methods for the analysis of gene-expression evolution: An example using yeast functional genomic data

被引:55
|
作者
Oakley, TH [1 ]
Gu, ZL [1 ]
Abouheif, E [1 ]
Patel, NH [1 ]
Li, WH [1 ]
机构
[1] Univ Chicago, Howard Hughes Med Inst, Chicago, IL 60637 USA
关键词
evolutionary biology; gene expression; nonphylogenetic; maximum likelihood; microarray; gene duplication;
D O I
10.1093/molbev/msh257
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative methods to compare different models of gene-expression evolution in a maximum-likelihood framework. We find that expression of duplicated genes has evolved according to a nonphylogenetic model, where closely related genes are no more likely than more distantly related genes to share common expression patterns. These results are consistent with previous studies that found rapid evolution of gene expression during the history of yeast. The comparative methods presented here are general enough to test a wide range of evolutionary hypotheses using genomic-scale data from any organism.
引用
收藏
页码:40 / 50
页数:11
相关论文
共 50 条
  • [1] Comparative gene-expression analysis
    Kozian, DH
    Kirschbaum, BJ
    [J]. TRENDS IN BIOTECHNOLOGY, 1999, 17 (02) : 73 - 78
  • [2] A Comparative Analysis of Gene-Expression Data of Multiple Cancer Types
    Xu, Kun
    Cui, Juan
    Olman, Victor
    Yang, Qing
    Puett, David
    Xu, Ying
    [J]. PLOS ONE, 2010, 5 (10):
  • [3] ANALYSIS AND EXPLOITATION OF YEAST GENE-EXPRESSION SIGNALS
    KINGSMAN, SM
    ADAMS, SE
    MALIM, M
    STANWAY, CA
    RATHJEN, P
    COUSENS, D
    WILSON, M
    KINGSMAN, AJ
    [J]. BULLETIN DE L INSTITUT PASTEUR, 1988, 86 (01): : 103 - 111
  • [4] Methods for multiple outcome meta-analysis of gene-expression data
    Vennou, Konstantina E.
    Piovani, Daniele
    Kontou, Panagiota, I
    Bonovas, Stefanos
    Bagos, Pantelis G.
    [J]. METHODSX, 2020, 7
  • [5] Improving Gene-Expression Data Analysis
    Hapert, Richard L.
    Laurance, Megan E.
    [J]. GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2012, 32 (05): : 38 - 39
  • [6] CONTROL OF GENE-EXPRESSION IN YEAST USING HAIRPIN RIBOZYMES
    DRENSER, K
    UTLEY, L
    LEWIN, A
    [J]. PROTEIN ENGINEERING, 1995, 8 : 88 - 88
  • [7] Consensus clustering and functional interpretation of gene-expression data
    Stephen Swift
    Allan Tucker
    Veronica Vinciotti
    Nigel Martin
    Christine Orengo
    Xiaohui Liu
    Paul Kellam
    [J]. Genome Biology, 5
  • [8] Consensus clustering and functional interpretation of gene-expression data
    Swift, S
    Tucker, A
    Vinciotti, V
    Martin, N
    Orengo, C
    Liu, XH
    Kellam, P
    [J]. GENOME BIOLOGY, 2004, 5 (11)
  • [9] Comparative analysis of clustering methods for gene expression time course data
    Costa, IG
    de Carvalho, FDT
    de Souto, MCP
    [J]. GENETICS AND MOLECULAR BIOLOGY, 2004, 27 (04) : 623 - 631
  • [10] Classification using functional data analysis for temporal gene expression data
    Leng, XY
    Müller, HG
    [J]. BIOINFORMATICS, 2006, 22 (01) : 68 - 76