Matching preclusion for k-ary n-cubes with odd k ≥ 3

被引:1
|
作者
Hu, Xiaomin [1 ]
Zhao, Bin [2 ]
Tian, Yingzhi [1 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Hebei Univ Engn, Sch Math & Phys, Handan 056038, Peoples R China
关键词
Matching preclusion; Matchable; k-ary n-cubes;
D O I
10.1016/j.dam.2017.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The matching preclusion number of a graph is the minimum number of edges whose deletion results the remaining graph that has neither perfect matchings nor almost perfect matchings. In this paper, we prove that the matching preclusion number of k-ary n-cubes is 4n - 1 except k = 3 and n = 2, where k is odd and k >= 3. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 50 条
  • [21] The diagnosability of the k-ary n-cubes using the pessimistic strategy
    Wang, Xin-Ke
    Zhu, Qiang
    Feng, Ruitao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (01) : 1 - 10
  • [22] The ''express channel'' concept in hypermeshes and k-ary n-cubes
    Loucif, S
    Mackenzie, LM
    OuldKhaoua, M
    EIGHTH IEEE SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 1996, : 566 - 569
  • [23] Reliability assessment for k-ary n-cubes with faulty edges
    Li, Si-Yu
    Li, Xiang-Jun
    Ma, Meijie
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2024, 190
  • [24] A PERFORMANCE-MODEL OF PIPELINED K-ARY N-CUBES
    GAUGHAN, PT
    YALAMANCHILI, S
    IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (08) : 1059 - 1063
  • [25] Strong Menger Connectedness of Augmented k-ary n-cubes
    Gu, Mei-Mei
    Chang, Jou-Ming
    Hao, Rong-Xia
    COMPUTER JOURNAL, 2021, 64 (05): : 812 - 825
  • [26] The h-extra connectivity of k-ary n-cubes
    Liu, Aixia
    Wang, Shiying
    Yuan, Jun
    Ma, Xue
    THEORETICAL COMPUTER SCIENCE, 2019, 784 : 21 - 45
  • [27] A parallel algorithm for Lagrange interpolation on k-ary n-cubes
    Sarbazi-Azad, H
    Mackenzie, LM
    Ould-Khaoua, M
    PARALLEL COMPUTATION, 1999, 1557 : 85 - 95
  • [28] Panconnectivity and Edge-Pancyclicity of k-Ary n-Cubes
    Hsieh, Sun-Yuan
    Lin, Tsong-Jie
    NETWORKS, 2009, 54 (01) : 1 - 11
  • [29] Increasing the adaptivity of routing algorithms for k-ary n-cubes
    Baydal, E
    López, P
    Duato, J
    10TH EUROMICRO WORKSHOP ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING, PROCEEDINGS, 2002, : 455 - 462
  • [30] Hamiltonian-like properties of k-ary n-cubes
    Wang, DQ
    An, T
    Pan, MY
    Wang, KL
    Qu, SY
    PDCAT 2005: SIXTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PROCEEDINGS, 2005, : 1002 - 1007