Asymptotic behavior of non-autonomous stochastic complex Ginzburg-Landau equations on unbounded thin domains

被引:1
|
作者
Chen, Zhang [1 ]
Li, Lingyu [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
REACTION-DIFFUSION EQUATIONS; RANDOM ATTRACTORS; MULTIPLICATIVE NOISE; EXISTENCE; DYNAMICS;
D O I
10.1063/5.0037663
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper mainly investigates the asymptotic behavior of non-autonomous stochastic complex Ginzburg-Landau equations on unbounded thin domains. We first prove the existence and uniqueness of random attractors for the considered equation and its limit equation. Due to the non-compactness of Sobolev embeddings on unbounded domains, the pullback asymptotic compactness of such a stochastic equation is proved by the tail-estimate method. Then, we show the upper semi-continuity of random attractors when thin domains collapse onto the real space R.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Non-autonomous Ginzburg-Landau equation and its attractors
    Vishik, MI
    Chepyzhov, VV
    SBORNIK MATHEMATICS, 2005, 196 (5-6) : 791 - 815
  • [22] DYNAMICS OF NON-AUTONOMOUS FRACTIONAL GINZBURG-LANDAU EQUATIONS DRIVEN BY COLORED NOISE
    Lu, Hong
    Zhang, Mingji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (09): : 3553 - 3576
  • [23] Ergodicity for the stochastic complex Ginzburg-Landau equations
    Odasso, Cyril
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (04): : 417 - 454
  • [24] Attractors of the Derivative Complex Ginzburg-Landau Equation in Unbounded Domains
    郭柏灵
    韩永前
    数学进展, 2005, (05) : 637 - 639
  • [25] Attractors of derivative complex Ginzburg-Landau equation in unbounded domains
    Guo B.
    Han Y.
    Frontiers of Mathematics in China, 2007, 2 (3) : 383 - 416
  • [26] LIMITING BEHAVIOR OF NON-AUTONOMOUS STOCHASTIC REACTION-DIFFUSION EQUATIONS WITH COLORED NOISE ON UNBOUNDED THIN DOMAINS
    Shi, Lin
    Wang, Xuemin
    Li, Dingshi
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (12) : 5367 - 5386
  • [27] WONG-ZAKAI APPROXIMATIONS AND ASYMPTOTIC BEHAVIOR OF STOCHASTIC GINZBURG-LANDAU EQUATIONS
    Ma, Dandan
    Shu, Ji
    Qin, Ling
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (11): : 4335 - 4359
  • [28] The asymptotic behavior of the stochastic coupled Kuramoto-Sivashinsky and Ginzburg-Landau equations
    Lin, Lin
    Li, Mei
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [29] Asymptotic behavior of random coupled Ginzburg-Landau equation driven by colored noise on unbounded domains
    Chen, Zhang
    Li, Lingyu
    Yang, Dandan
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [30] Averaging principle for stochastic complex Ginzburg-Landau equations
    Cheng, Mengyu
    Liu, Zhenxin
    Roeckner, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 368 : 58 - 104