A Bilateral Constrained Image Reconstruction Method Using Electrical Impedance Tomography and Ultrasonic Measurement

被引:20
|
作者
Liu, Hao [1 ]
Zhao, Shu [2 ,3 ]
Tan, Chao [1 ]
Dong, Feng [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin Key Lab Proc Measurement & Control, Tianjin 300072, Peoples R China
[2] Chinese Acad Med Sci, Inst Biomed Engn, Tianjin 300192, Peoples R China
[3] Peking Union Med Coll, Tianjin 300192, Peoples R China
基金
中国国家自然科学基金;
关键词
Tomography; Image reconstruction; Conductivity; Electrodes; Conductivity measurement; Voltage measurement; Sensors; Electrical impedance tomography; dual-modality reconstruction; bilateral constraint; ultrasound measurement; augment Lagrange method; SYSTEM; MODELS; BRAIN;
D O I
10.1109/JSEN.2019.2928022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical Impedance Tomography (EIT) reconstructs the conductivity distribution in a sensing area through an array of boundary electrodes and has received increasing attention in bio-impedance measurement. To provide accurate image reconstruction of irregular conductivity distribution in large sensing area, we propose an efficient and accurate bilateral constrained dual modality reconstruction algorithm using EIT and ultrasonic measurement, where the EIT pre-reconstruction helps to select the time of flight (TOF) time window and the ultrasound reflection information of boundary points contributes to joint iterative reconstruction. In the simulations and phantom experiments selecting abdomen tumor as the object of interest, the proposed method successfully reconstructed the small inclusions. Quantitatively, the proposed bilateral constrained method has improved the reconstruction performance in terms of boundary preservation and robustness compared with single modality EIT and ultrasonic algorithms.
引用
收藏
页码:9883 / 9895
页数:13
相关论文
共 50 条
  • [21] Image Reconstruction Based on Homotopy Perturbation Inversion Method for Electrical Impedance Tomography
    Wang, Jing
    Han, Bo
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [22] Image reconstruction method for electrical impedance tomography based on RBF and attention mechanism
    Dong, Qinghe
    Zhang, Yunjia
    He, Qian
    Xu, Chuanpei
    Pan, Xipeng
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [23] Logistic regression in image reconstruction in electrical impedance tomography
    Kozlowski, Edward
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Cieplak, Tomasz
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2020, 96 (05): : 95 - 98
  • [24] UNet model in image reconstruction for electrical impedance tomography
    Maciura, Lukasz
    Wojcik, Dariusz
    Rosa, Wojciech
    Rymarczyk, Tomasz
    Maj, Michal
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (04): : 123 - 126
  • [25] Lobe based image reconstruction in Electrical Impedance Tomography
    Schullcke, Benjamin
    Gong, Bo
    Krueger-Ziolek, Sabine
    Tawhai, Merryn
    Adler, Andy
    Mueller-Lisse, Ullrich
    Moeller, Knut
    [J]. MEDICAL PHYSICS, 2017, 44 (02) : 426 - 436
  • [26] Image reconstruction with discontinuous coefficient in electrical impedance tomography
    Rymarczyk, Tomasz
    Filipowicz, Stefan F.
    Sikora, Jan
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 149 - 151
  • [27] New regularized image reconstruction for electrical impedance tomography
    Hou, WD
    Mo, YL
    [J]. IMAGE MATCHING AND ANALYSIS, 2001, 4552 : 286 - 291
  • [28] Sparse optimization for image reconstruction in Electrical Impedance Tomography
    Varanasi, Santhosh Kumar
    Manchikatla, Chaitanya
    Polisetty, Venkata Goutham
    Jampana, Phanindra
    [J]. IFAC PAPERSONLINE, 2019, 52 (01): : 34 - 39
  • [29] Influence of regularization in image reconstruction in electrical impedance tomography
    Queiroz, J. L. L.
    [J]. FIRST LATIN-AMERICAN CONFERENCE ON BIOIMPEDANCE (CLABIO 2012), 2012, 407
  • [30] A Reconstruction Method for Electrical Impedance Tomography Using Particle Swarm Optimization
    Chen, Min-you
    Hu, Gang
    He, Wei
    Yang, Yan-li
    Zhai, Jin-qian
    [J]. LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT II, 2010, 6329 : 342 - 350