Fundamental physics with a state-of-the-art optical clock in space

被引:31
|
作者
Derevianko, Andrei [1 ]
Gibble, Kurt [2 ]
Hollberg, Leo [3 ]
Newbury, Nathan R. [4 ]
Oates, Chris [4 ]
Safronova, Marianna S. [5 ]
Sinclair, Laura C. [4 ]
Yu, Nan [6 ]
机构
[1] Univ Nevada, Dept Phys, Reno, NV 89557 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Stanford Univ, Dept Phys, HEPL, 452 Lomita Mall, Stanford, CA 94305 USA
[4] NIST, 325 Broadway, Boulder, CO 80305 USA
[5] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[6] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
space clocks; optical atomic clocks; tests of fundamental physics; gravitational redshift; optical time transfer; tests of general relativity; FREQUENCY TRANSFER; RELATIVISTIC THEORY; GENERAL-RELATIVITY; ATMOSPHERIC-TURBULENCE; GRAVITATIONAL REDSHIFT; TIME SYNCHRONIZATION; ATOMIC CLOCKS; DARK-MATTER; GRAVITY; COMB;
D O I
10.1088/2058-9565/ac7df9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent advances in optical atomic clocks and optical time transfer have enabled new possibilities in precision metrology for both tests of fundamental physics and timing applications. Here we describe a space mission concept that would place a state-of-the-art optical atomic clock in an eccentric orbit around Earth. A high stability laser link would connect the relative time, range, and velocity of the orbiting spacecraft to earthbound stations. The primary goal for this mission would be to test the gravitational redshift, a classical test of general relativity, with a sensitivity 30 000 times beyond current limits. Additional science objectives include other tests of relativity, enhanced searches for dark matter and drifts in fundamental constants, and establishing a high accuracy international time/geodesic reference.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Colour physics and colour measurement: state-of-the-art and challenges
    Westland, S.
    [J]. SURFACE COATINGS INTERNATIONAL, 2013, 96 (02): : 100 - 104
  • [12] State-of-the-Art Space Mission Telecommand Receivers
    Baldi, M.
    Bertinelli, M.
    Chiaraluce, F.
    Closas, P.
    Dhakal, P.
    Garello, R.
    Maturo, N.
    Navarro, M.
    Palomo, J. M.
    Paolini, E.
    Pfletschinger, S.
    Silva, P. F.
    Simone, L.
    Vila-Valls, J.
    [J]. IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2017, 32 (06) : 4 - 15
  • [13] SPACE AND PROCESS HEATING - STATE-OF-THE-ART AND PROSPECTS
    KRUZHELNITSKY, VN
    [J]. GEOTHERMICS, 1985, 14 (2-3) : 165 - 173
  • [14] The state-of-the-art of space grids structures in China
    Liu, XL
    [J]. ADVANCES IN STEEL STRUCTURES, VOLS 1 AND 2, 1996, : 297 - 301
  • [15] Fundamental performance of state-of-the-art proximity effect correction methods
    Hofmann, U
    Crandall, R
    Johnson, L
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (06): : 2940 - 2944
  • [16] Fundamental and State-of-the-Art Technologies In Retinal Studies and Disease Repair
    Ma, Yuan
    Liu, Chunqiao
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (193):
  • [17] MATERIALS FOR OPTICAL STORAGE - A STATE-OF-THE-ART SURVEY
    BRODY, H
    [J]. LASER FOCUS WITH FIBEROPTIC TECHNOLOGY, 1981, 17 (08): : 47 - 52
  • [18] The state-of-the-art and future of optical storage media
    Franz, U
    Haese, W
    [J]. KUNSTSTOFFE-PLAST EUROPE, 2001, 91 (10): : 210 - +
  • [19] STATE-OF-THE-ART OPTICAL-ACOUSTIC DETECTORS
    PANKRATOV, NA
    [J]. JOURNAL OF OPTICAL TECHNOLOGY, 1994, 61 (05) : 359 - 367
  • [20] State-of-the-art of optical waveguide technology in Poland
    Romaniuk, RS
    [J]. OPTO-ELECTRONICS REVIEW, 2000, 8 (02) : II - II