Fundamental physics with a state-of-the-art optical clock in space

被引:31
|
作者
Derevianko, Andrei [1 ]
Gibble, Kurt [2 ]
Hollberg, Leo [3 ]
Newbury, Nathan R. [4 ]
Oates, Chris [4 ]
Safronova, Marianna S. [5 ]
Sinclair, Laura C. [4 ]
Yu, Nan [6 ]
机构
[1] Univ Nevada, Dept Phys, Reno, NV 89557 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Stanford Univ, Dept Phys, HEPL, 452 Lomita Mall, Stanford, CA 94305 USA
[4] NIST, 325 Broadway, Boulder, CO 80305 USA
[5] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[6] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
space clocks; optical atomic clocks; tests of fundamental physics; gravitational redshift; optical time transfer; tests of general relativity; FREQUENCY TRANSFER; RELATIVISTIC THEORY; GENERAL-RELATIVITY; ATMOSPHERIC-TURBULENCE; GRAVITATIONAL REDSHIFT; TIME SYNCHRONIZATION; ATOMIC CLOCKS; DARK-MATTER; GRAVITY; COMB;
D O I
10.1088/2058-9565/ac7df9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent advances in optical atomic clocks and optical time transfer have enabled new possibilities in precision metrology for both tests of fundamental physics and timing applications. Here we describe a space mission concept that would place a state-of-the-art optical atomic clock in an eccentric orbit around Earth. A high stability laser link would connect the relative time, range, and velocity of the orbiting spacecraft to earthbound stations. The primary goal for this mission would be to test the gravitational redshift, a classical test of general relativity, with a sensitivity 30 000 times beyond current limits. Additional science objectives include other tests of relativity, enhanced searches for dark matter and drifts in fundamental constants, and establishing a high accuracy international time/geodesic reference.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] State-of-the-art generators for top physics
    Re, E.
    [J]. NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2012, 35 (03): : 13 - 18
  • [2] SPACE FRAMES: STATE-OF-THE-ART
    陈樾荫
    [J]. 铁道建筑, 1986, (03) : 28 - 29
  • [3] The State-of-the-art in Space Robotics
    da Fonseca, Ijar M.
    Pontuschka, Mauricio N.
    [J]. XVII BRAZILIAN COLLOQUIUM ON ORBITAL DYNAMICS, CBDO 2014, 2015, 641
  • [4] State-of-the-Art Nuclear Physics Research in Medicine
    Chernyaev, A. P.
    Lykova, E. N.
    [J]. PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2023, 20 (04) : 729 - 744
  • [5] State-of-the-Art Nuclear Physics Research in Medicine
    A. P. Chernyaev
    E. N. Lykova
    [J]. Physics of Particles and Nuclei Letters, 2023, 20 : 729 - 744
  • [6] State-of-the-art of the Problem of Space Debris
    Litvinenko, Leonid N.
    [J]. Journal of Automation and Information Sciences, 2003, 35 (5-8) : 31 - 33
  • [7] State-of-the-Art in Microelectronics Class Space
    Makarov, Denis V.
    Kharitonov, Sergey A.
    Balagurov, Maxim V.
    Shkolniy, Vadim N.
    Lopatin, Alexander A.
    [J]. 2016 13TH INTERNATIONAL SCIENTIFIC-TECHNICAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRONIC INSTRUMENT ENGINEERING (APEIE), VOL 3, 2016, : 107 - 111
  • [8] State-of-the-art in integrated optical microspectrometers
    Wolffenbuttel, RF
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2004, 53 (01) : 197 - 202
  • [9] State-of-the-Art Optical Resonator Gyroscopes
    Venediktov V.Y.
    Filatov Y.V.
    Shalymov E.V.
    [J]. Gyroscopy and Navigation, 2023, 14 (1) : 27 - 35
  • [10] State-of-the-Art Design of Index Modulation in the Space, Time, and Frequency Domains: Benefits and Fundamental Limitations
    Sugiura, Shinya
    Ishihara, Takumi
    Nakao, Miyu
    [J]. IEEE ACCESS, 2017, 5 : 21774 - 21790