Latent diffusion models for survival analysis

被引:3
|
作者
Roberts, Gareth O. [1 ]
Sangalli, Laura M. [2 ]
机构
[1] Univ Warwick, Dept Stat, CRiSM, Coventry CV4 7AL, W Midlands, England
[2] Politecn Milan, Dipartimento Matemat, MOX, I-20133 Milan, Italy
关键词
diffusion processes; parametrization of hierarchical models; survival analysis; PROPORTIONAL HAZARDS; DISTRIBUTIONS; INFERENCE;
D O I
10.3150/09-BEJ217
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bayesian hierarchical models for survival analysis, where the survival times are modeled through an underlying diffusion process which determines the hazard rate. We show how these models can be efficiently treated by means of Markov chain Monte Carlo techniques.
引用
收藏
页码:435 / 458
页数:24
相关论文
共 50 条
  • [31] Unleashing the Potential of the Semantic Latent Space in Diffusion Models for Image Dehazing
    Yang, Zizheng
    Yu, Hu
    Li, Bing
    Zhang, Jinghao
    Huang, Jie
    Zhao, Feng
    COMPUTER VISION-ECCV 2024, PT XLIV, 2025, 15102 : 371 - 389
  • [32] Understanding the Latent Space of Diffusion Models through the Lens of Riemannian Geometry
    Park, Yong-Hyun
    Kwon, Mingi
    Choi, Jaewoong
    Jo, Junghyo
    Uh, Youngjung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [33] Conditional Image-to-Video Generation with Latent Flow Diffusion Models
    Ni, Haomiao
    Shi, Changhao
    Li, Kai
    Huang, Sharon X.
    Min, Martin Renqiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 18444 - 18455
  • [34] InstructME: An Instruction Guided Music Edit Framework with Latent Diffusion Models
    Han, Bing
    Dai, Junyu
    Hao, Weituo
    He, Xinyan
    Guo, Dong
    Chen, Jitong
    Wang, Yuxuan
    Qian, Yanmin
    Song, Xuchen
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 5835 - 5843
  • [35] NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion Models
    Kim, Seung Wook
    Brown, Bradley
    Yin, Kangxue
    Kreis, Karsten
    Schwarz, Kalja.
    Li, Daiging
    Rombach, Robin
    Torralba, Antonio
    Fidler, Sanja
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 8496 - 8506
  • [36] High-Fidelity Guided Image Synthesis with Latent Diffusion Models
    Singh, Jaskirat
    Gould, Stephen
    Zheng, Liang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5997 - 6006
  • [37] Controllable Mesh Generation Through Sparse Latent Point Diffusion Models
    Lyu, Zhaoyang
    Wang, Jinyi
    An, Yuwei
    Zhang, Ya
    Lin, Dahua
    Dai, Bo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 271 - 280
  • [39] Bayesian Analysis of Latent Threshold Dynamic Models
    Nakajima, Jouchi
    West, Mike
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (02) : 151 - 164
  • [40] Hierarchical latent class models for cluster analysis
    Zhang, NL
    EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 230 - 237