An integrated waste-to-energy approach: A resilient energy system design for sustainable communities

被引:7
|
作者
Babalola, Samuel O. [1 ]
Nel, Joshua J. [1 ]
Tshigo, Victor [1 ]
Daramola, Michael O. [1 ]
Iwarere, Samuel A. [1 ]
机构
[1] Univ Pretoria, Fac Engn Built Environm & Informat Technol, Dept Chem Engn, ZA-0028 Pretoria, South Africa
关键词
Hybrid power system; Biogas; Off-grid electricity; Sustainable development; Clean energy and environment; RENEWABLE ENERGY; TECHNOECONOMIC FEASIBILITY; RURAL ELECTRIFICATION; POWER-GENERATION; HYBRID; OPTIMIZATION; ELECTRICITY;
D O I
10.1016/j.enconman.2022.115551
中图分类号
O414.1 [热力学];
学科分类号
摘要
The idea of sustainable cities and communities is a collective goal that runs across intergovernmental programs, like the United Nations Sustainable Development Goals and the African Agenda 2063 strategic framework. However, with several communities in sub-Saharan Africa and some parts of Asia having no access to electricity, this objective is still a "mirage ". Developing a resilient energy system for an unelectrified community should involve a thorough assessment and integration of the local energy resources in a decentralized generation and distribution system. For example, technologies that convert the waste generated in the community into biogas should be a part of microgrid systems. This paper thus proposes a microgrid solution for small communities where a combination of waste-to-energy, battery storage, and solar photovoltaic technologies can provide enough energy needed for the sustainable development of local communities. An unelectrified village in Nigeria has been selected as a case study. The energy demand for the village was carefully analyzed as 574 kWh/day. Techno-economic analysis of the hybrid solar PV/biogas/diesel system fit to serve this load was carried out using hybrid optimization of multiple energy resources software. The optimum hybrid system configuration was found to have a net present cost of $436,943 for 25 years with carbon dioxide emission amounting to 4,070 kg/year, compared to the traditional solar/diesel/battery microgrid which will require net present cost of $655,521 and emit 22,648 kg of carbon dioxide annually. Also, the cost of energy from this system is $0.151/kWh which is similar to the average grid tariff in the region. From the breakeven grid distance analysis, it was noted that the proposed solution is much more economical than grid extension for communities above a distance of 2.78 km to the grid.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Optimal Design of Industrial Waste-to-Energy Networks
    Bolis, Vasco
    Capon-Garcia, Elisabet
    Hungerbuhler, Konrad
    26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT B, 2016, 38B : 2127 - 2132
  • [32] Comparing Waste-to-Energy technologies by applying energy system analysis
    Munster, Marie
    Lund, Henrik
    WASTE MANAGEMENT, 2010, 30 (07) : 1251 - 1263
  • [33] Sustainable utilization of energy from waste: A review of potentials and challenges of Waste-to-energy in South Africa
    Adeleke, Oluwatobi
    Akinlabi, Stephen A.
    Jen, Tien-Chien
    Dunmade, Israel
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2021, 18 (14) : 1550 - 1564
  • [34] Proximate analysis of waste-to-energy potential of municipal solid waste for sustainable renewable energy generation
    Lawal, I. M.
    Ndagi, A.
    Mohammed, A.
    Saleh, Y. Y.
    Shuaibu, A.
    Hassan, I.
    Abubakar, S.
    Soja, U. B.
    Jagaba, A. H.
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (01)
  • [35] Sustainable management of municipal solid waste through waste-to-energy technologies
    Varjani, Sunita
    Shahbeig, Hossein
    Popat, Kartik
    Patel, Zeel
    Vyas, Shaili
    Shah, Anil, V
    Barcelo, Damia
    Huu Hao Ngo
    Sonne, Christian
    Lam, Su Shiung
    Aghbashlo, Mortaza
    Tabatabaei, Meisam
    BIORESOURCE TECHNOLOGY, 2022, 355
  • [36] An innovative waste-to-energy system integrated with a coal-fired power plant
    Chen, Heng
    Zhang, Meiyan
    Xue, Kai
    Xu, Gang
    Yang, Yongping
    Wang, Zepeng
    Liu, Wenyi
    Liu, Tong
    ENERGY, 2020, 194
  • [37] A sustainable network design for municipal solid waste management considering waste-to-energy conversion under uncertainty
    Saatchi, Pantea
    Salamian, Farima
    Manavizadeh, Neda
    Rabbani, Masoud
    ENGINEERING OPTIMIZATION, 2024,
  • [38] Advance in waste-to-energy
    Shibuya, Eiichl
    Usuki, Tetsuya
    Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2010, 89 (06): : 490 - 497
  • [39] Waste-to-energy incineration
    Gelfand, LE
    Wong, JB
    ENERGY ENGINEERING, 2001, 98 (01) : 23 - +
  • [40] LIQUID WASTE MANAGEMENT METHODOLOGY. A WASTE-TO-ENERGY APPROACH
    Kim, Lidia
    Arama, Georgeta Madalina
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2019, 18 (12): : 2663 - 2671