Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system

被引:192
|
作者
Poole, D. P. [1 ,3 ]
Godfrey, C. [1 ,3 ]
Cattaruzza, F. [1 ]
Cottrell, G. S. [1 ]
Kirkland, J. G. [1 ,3 ]
Pelayo, J. C. [1 ]
Bunnett, N. W. [1 ,2 ]
Corvera, C. U. [1 ,3 ]
机构
[1] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Physiol, San Francisco, CA USA
[3] Dept Vet Affairs Med Ctr, San Francisco, CA USA
来源
NEUROGASTROENTEROLOGY AND MOTILITY | 2010年 / 22卷 / 07期
基金
澳大利亚国家健康与医学研究理事会;
关键词
bile acids; enteric neurons; G protein-coupled receptor; motility; SODIUM DEOXYCHOLATE; JEJUNAL MOTILITY; COLONIC MOTILITY; INDUCED FLUID; SECRETION; INVOLVEMENT; INHIBITION; TRANSIT; RABBIT; IDENTIFICATION;
D O I
10.1111/j.1365-2982.2010.01487.x
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background Bile acids (BAs) regulate cells by activating nuclear and membrane-bound receptors. G protein coupled bile acid receptor 1 (GpBAR1) is a membrane-bound G-protein-coupled receptor that can mediate the rapid, transcription-independent actions of BAs. Although BAs have well-known actions on motility and secretion, nothing is known about the localization and function of GpBAR1 in the gastrointestinal tract. Methods We generated an antibody to the C-terminus of human GpBAR1, and characterized the antibody by immunofluorescence and Western blotting of HEK293-GpBAR1-GFP cells. We localized GpBAR1 immunoreactivity (IR) and mRNA in the mouse intestine, and determined the mechanism by which BAs activate GpBAR1 to regulate intestinal motility. Key Results The GpBAR1 antibody specifically detected GpBAR1-GFP at the plasma membrane of HEK293 cells, and interacted with proteins corresponding in mass to the GpBAR1-GFP fusion protein. GpBAR1-IR and mRNA were detected in enteric ganglia of the mouse stomach and small and large intestine, and in the muscularis externa and mucosa of the small intestine. Within the myenteric plexus of the intestine, GpBAR1-IR was localized to similar to 50% of all neurons and to > 80% of inhibitory motor neurons and descending interneurons expressing nitric oxide synthase. Deoxycholic acid, a GpBAR1 agonist, caused a rapid and sustained inhibition of spontaneous phasic activity of isolated segments of ileum and colon by a neurogenic, cholinergic and nitrergic mechanism, and delayed gastrointestinal transit. Conclusions & Inferences G protein coupled bile acid receptor 1 is unexpectedly expressed in enteric neurons. Bile acids activate GpBAR1 on inhibitory motor neurons to release nitric oxide and suppress motility, revealing a novel mechanism for the actions of BAs on intestinal motility.
引用
收藏
页码:814 / 825+e227
页数:14
相关论文
共 50 条
  • [21] Expression of bile acid receptor TGR5 in gastric adenocarcinoma
    Cao, Weibiao
    Tian, Wei
    Hong, Jie
    Li, Dan
    Tavares, Rosemarie
    Noble, Lelia
    Moss, Steven F.
    Resnick, Murray B.
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2013, 304 (04): : G322 - G327
  • [22] TUDCA skews microglia towards M2 phenotype through the G-protein coupled bile acid receptor GPBAR1/TGR5
    Yanguas Casas, N.
    de la Barreda Manso, M. A.
    Nieto Sampedro, M.
    Romero Ramirez, L.
    GLIA, 2015, 63 : E357 - E357
  • [23] Identification of miR-26a as a Target Gene of Bile Acid Receptor GPBAR-1/TGR5
    Chen, Xiaosong
    Xu, Haixia
    Ding, Lili
    Lou, Guiyu
    Liu, Yan
    Yao, Yalan
    Chen, Liangwan
    Huang, Wendong
    Fu, Xianghui
    PLOS ONE, 2015, 10 (06):
  • [24] G-Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5) Agonists Reduce the Production of Proinflammatory Cytokines and Stabilize the Alternative Macrophage Phenotype
    Hoegenauer, Klemens
    Arista, Luca
    Schmiedeberg, Niko
    Werner, Gudrun
    Jaksche, Herbert
    Bouhelal, Rochdi
    Nguyen, Deborah G.
    Bhat, B. Ganesh
    Raad, Layla
    Rauld, Celine
    Carballido, Jose M.
    JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (24) : 10343 - 10354
  • [25] The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines
    Carino, Adriana
    Graziosi, Luigina
    D'Amore, Claudio
    Cipriani, Sabrina
    Marchiano, Silvia
    Marino, Elisabetta
    Zampella, Angela
    Rende, Mario
    Mosci, Paolo
    Distrutti, Eleonora
    Donini, Annibale
    Fiorucci, Stefano
    ONCOTARGET, 2016, 7 (38) : 61021 - 61035
  • [26] Activation of G-protein-coupled bile acid receptor Gpbar1 (TGR5) inhibits degradation of type II collagen and aggrecan in human chondrocytes
    Zhuo, Wenkun
    Li, Bingsheng
    Zhang, Dawei
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2019, 856
  • [27] THE MEMBRANE-BOUND BILE ACID RECEPTOR TGR5 (GPBAR-1) IS HIGHLY EXPRESSED IN INTRAHEPATIC CHOLANGIOCARCINOMA
    Keitel, Verena
    Reinehr, Roland
    Reich, Maria
    Sommerfeld, Annika
    Cupisti, Kenko
    Knoefel, Wolfram T.
    Haeussinger, Dieter
    HEPATOLOGY, 2011, 54 : 769A - 769A
  • [28] Mogrol stimulates G-protein-coupled bile acid receptor 1 (GPBAR1/TGR5) and insulin secretion from pancreatic β-cells and alleviates hyperglycemia in mice
    Tanaka, Chisato
    Harada, Naoki
    Teraoka, Yoshiaki
    Urushizaki, Hiroki
    Shinmori, Yoh
    Onishi, Teruaki
    Yotsumoto, Yusuke
    Ito, Yuta
    Kitakaze, Tomoya
    Inui, Takashi
    Murata, Yuji
    Inui, Hiroshi
    Yamaji, Ryoichi
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [29] A Small Molecule TGR5 (GPBAR1) Agonist Shows Metabolic and Anti-Inflammatory Effects in Cells Expressing Human TGR5
    Chin, Janice E.
    Bernardo, Barbara L.
    Brenner, Martin B.
    Buxton, Joanne
    Cheng, John B.
    Futatsugi, Kentaro
    Gautreau, Denise
    Hadcock, John R.
    Hinchey, Terri
    Janssen, Ann
    Kelly-Sullivan, Dawn
    Piotrowski, David W.
    Roush, Nicole
    Orr, Suvi
    Warmus, Joseph
    Wolford, Angela
    DIABETES, 2013, 62 : A525 - A525
  • [30] The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes
    Keitel, Verena
    Ullmer, Christoph
    Haeussinger, Dieter
    BIOLOGICAL CHEMISTRY, 2010, 391 (07) : 785 - 789