STREAMING SPATIO-TEMPORAL VIDEO SEGMENTATION USING GAUSSIAN MIXTURE MODEL

被引:0
|
作者
Mukherjee, Dibyendu [1 ]
Wu, Q. M. Jonathan [1 ]
机构
[1] Univ Univ, Dept Elect & Comp Engn, Windsor, ON, Canada
关键词
Video Segmentation; Gaussian Mixture Model; Clustering; IMAGE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Development of an automatic streaming video segmentation method is crucial for many video analysis applications. However, consistency of temporal segmentation and scalability for real-time applications are difficult to achieve. This work proposes a linear-time video segmentation method which is scalable and temporally consistent for streaming videos. A Gaussian Mixture Model (GMM) is used to segment each frame while a recursive filtering updates the parameters of the GMM. This hybrid methodology can uniquely propagate Gaussian clusters through each new frame, update the variance recursively, and create or remove clusters as necessary. In this way, the model automatically manipulates the number of clusters in run-time and adapts to any video sequence over streaming frames maintaining temporal coherence. The method needs a distance threshold value as the main parameter. The creation and removal of new clusters are governed by a cluster similarity criterion that can be based on user-defined distance measure. The experimental results are presented with two possible distance measures. The performance of the proposed method on several datasets is found to be comparable to state-of-the-art video segmentation algorithms.
引用
收藏
页码:4388 / 4392
页数:5
相关论文
共 50 条
  • [31] Spatio-temporal Human Body Segmentation from Video Stream
    Al Harbi, Nouf
    Gotoh, Yoshihiko
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PT I, 2013, 8047 : 78 - 85
  • [32] Spatio-temporal video transcoder for streaming over mobile communications networks
    Kim, Jae-Won
    Kwon, Goo-Rak
    Lee, June-Sok
    Kim, Nam-Hyeong
    Ko, Sung-Jea
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2006, E89B (10) : 2678 - 2686
  • [33] A spatio-temporal network for video semantic segmentation in surgical videos
    Grammatikopoulou, Maria
    Sanchez-Matilla, Ricardo
    Bragman, Felix
    Owen, David
    Culshaw, Lucy
    Kerr, Karen
    Stoyanov, Danail
    Luengo, Imanol
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 19 (2) : 375 - 382
  • [34] A spatio-temporal network for video semantic segmentation in surgical videos
    Grammatikopoulou, Maria
    Sanchez-Matilla, Ricardo
    Bragman, Felix
    Owen, David
    Culshaw, Lucy
    Kerr, Karen
    Stoyanov, Danail
    Luengo, Imanol
    arXiv, 2023,
  • [35] Spatio-Temporal Video Segmentation of Static Scenes and Its Applications
    Jiang, Hanqing
    Zhang, Guofeng
    Wang, Huiyan
    Bao, Hujun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (01) : 3 - 15
  • [36] Deep Spatio-Temporal Random Fields for Efficient Video Segmentation
    Chandra, Siddhartha
    Couprie, Camille
    Kokkinos, Iasonas
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8915 - 8924
  • [37] Learning Deep Spatio-Temporal Dependence for Semantic Video Segmentation
    Qiu, Zhaofan
    Yao, Ting
    Mei, Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (04) : 939 - 949
  • [38] Spatio-Temporal Video Segmentation With Shape Growth or Shrinkage Constraint
    Tarabalka, Yuliya
    Charpiat, Guillaume
    Brucker, Ludovic
    Menze, Bjoern H.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (09) : 3829 - 3840
  • [39] A Hierarchical Dirichlet Process Mixture of GID Distributions with Feature Selection for Spatio-Temporal Video Modeling and Segmentation
    Fan, Wentao
    Bouguila, Nizar
    Liu, Xin
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2771 - 2775
  • [40] Spatio-temporal segmentation using dominant sets
    Torsello, A
    Pavan, M
    Pelillo, M
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 2005, 3757 : 301 - 315