Adaptive residual subsampling methods for radial basis function interpolation and collocation problems

被引:111
|
作者
Driscoll, Tobin A. [1 ]
Heryudono, Alfa R. H. [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
adaptive; radial basis functions; interpolation; collocation; residual subsampling;
D O I
10.1016/j.camwa.2006.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a new adaptive algorithm for radial basis functions (RBFs) method applied to interpolation, boundary-value, and initial-boundary-value problems with localized features. Nodes can be added and removed based on residuals evaluated at a finer point set. We also adapt the shape parameters of RBFs based on the node spacings to prevent the growth of the conditioning of the interpolation matrix. The performance of the method is shown in numerical examples in one and two space dimensions with nontrivial domains. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:927 / 939
页数:13
相关论文
共 50 条
  • [31] A Radial Basis Function Collocation Method for Space-dependent Inverse Heat Problems
    Khan, Muhammad Nawaz
    Ahmad, Imtiaz
    Ahmad, Hijaz
    [J]. JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 : 1187 - 1199
  • [32] On the selection of a better radial basis function and its shape parameter in interpolation problems
    Chen, Chuin-Shan
    Noorizadegan, Amir
    Young, D. L.
    Chen, C. S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [33] Convergence Estimates for Stationary Radial Basis Function Interpolation and for Semi-discrete Collocation-Schemes
    Baxter, Brad
    Brummelhuis, Raymond
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (03)
  • [34] Convergence Estimates for Stationary Radial Basis Function Interpolation and for Semi-discrete Collocation-Schemes
    Brad Baxter
    Raymond Brummelhuis
    [J]. Journal of Fourier Analysis and Applications, 2022, 28
  • [35] Meshless methods based on collocation with radial basis functions
    Zhang, X
    Song, KZ
    Lu, MW
    Liu, X
    [J]. COMPUTATIONAL MECHANICS, 2000, 26 (04) : 333 - 343
  • [36] Meshless methods based on collocation with radial basis functions
    X. Zhang
    K. Z. Song
    M. W. Lu
    X. Liu
    [J]. Computational Mechanics, 2000, 26 : 333 - 343
  • [37] Fast solution of the radial basis function interpolation equations: Domain decomposition methods
    Beatson, RK
    Light, WA
    Billings, S
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (05): : 1717 - 1740
  • [38] INTERPOLATION OF TRACK DATA WITH RADIAL BASIS METHODS
    CARLSON, RE
    FOLEY, TA
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (12) : 27 - 34
  • [39] Fast solution of the radial basis function interpolation equations: Domain decomposition methods
    Beatson, R.K.
    Light, W.A.
    Billings, S.
    [J]. SIAM Journal on Scientific Computing, 2001, 22 (05): : 1717 - 1740
  • [40] Spectral Analysis for Radial Basis Function Collocation Matrices
    Cavoretto, R.
    De Rossi, A.
    Donatelli, M.
    Serra-Capizzano, S.
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 237 - 244