A sorptive reactor for CO2 capture and conversion to renewable methane

被引:87
|
作者
Miguel, C. V. [1 ]
Soria, M. A. [1 ]
Mendes, A. [1 ]
Madeira, L. M. [1 ]
机构
[1] Univ Porto, Fac Engn, Chem Engn Dept, LEPABE, Rua Dr Roberto Frias S-N, P-4200465 Oporto, Portugal
关键词
CO2 sorption and utilization; Reactive regeneration; Hybrid reactor; Methanation; Substitute natural gas; Power to Gas; WATER-GAS SHIFT; SUBSTITUTE NATURAL-GAS; HIGH-TEMPERATURE; CARBON-DIOXIDE; ADSORPTION; HYDROTALCITES; TECHNOLOGIES; SYSTEM;
D O I
10.1016/j.cej.2017.04.024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The aim of this work is to contribute for the scientific advancement of carbon capture and utilization technologies (CCU), while exploring the integration of intermittent renewable electricity production and substitute natural gas (SNG) production, the so-called "Power-to-Gas" concept. In this regard, a sorptive reactor for carrying in the same unit both CO2 capture and conversion to SNG using renewable H-2 was studied, in a perspective of process intensification. The sorptive reactor containing a layered bed of a K-promoted hydrotalcite to capture CO2 by sorption (step 1) and a nickel-based catalyst for CO2 hydrogenation (step 2) is operated at 300-350 degrees C and low pressure (<= 2.5 bar). Integration of CO2 capture and conversion in the same unit leads to enhanced sorption capacities and desorption kinetics promoted by the steam produced in situ during the reactive regeneration stage (methanation reaction). The sorptive reactor working under continuous operation mode allows to: i) capture ca. 030 mol of CO2 per kilogram of sorbent and per sorption cycle, at 350 degrees C and p(CO2) = 0.2 bar; ii) completely convert the captured CO2 into CH4; iii) reach a productivity of ca. 2.36 mol(CH4).k g(Cat)(-1).h(-1); iv) avoid CO formation at 300 degrees C and 1.34 bar and v) reach a CH4 purity of 35% at 350 degrees C after N-2 purge. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:590 / 602
页数:13
相关论文
共 50 条
  • [31] CO2 Capture and Direct Air CO2 Capture Followed by Integrated Conversion to Methane Assisted by Metal Hydroxides and a Ru/Al2O3 Catalyst
    Koch, Christopher J.
    Suhail, Zohaib
    Goeppert, Alain
    Prakash, G. K. Surya
    CHEMCATCHEM, 2023, 15 (23)
  • [32] Renewable N-doped microporous carbons from walnut shells for CO2 capture and conversion
    Shao, Xianzhao
    Zhang, Yujia
    Miao, Xinyi
    Wang, Wei
    Liu, Zhifeng
    Liu, Quan
    Zhang, Tianlei
    Ji, Jianwei
    Ji, Xiaohui
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (18): : 4701 - 4709
  • [33] Pyrrolizidines for direct air capture and CO2 conversion
    Hanusch, Jan M.
    Kerschgens, Isabel P.
    Huber, Florian
    Neuburger, Markus
    Gademann, Karl
    CHEMICAL COMMUNICATIONS, 2019, 55 (07) : 949 - 952
  • [34] Nanostructured Carbon Nitrides for CO2 Capture and Conversion
    Talapaneni, Siddulu Naidu
    Singh, Gurwinder
    Kim, In Young
    AlBahily, Khalid
    Al-Muhtaseb, Ala'a H.
    Karakoti, Ajay S.
    Tavakkoli, Ehsan
    Vinu, Ajayan
    ADVANCED MATERIALS, 2020, 32 (18)
  • [35] Integrated capture and conversion of CO2 to methane using deep eutectic solvents under mild conditions
    Wang, Fang
    Dai, Yasen
    Zhang, Yaozhi
    Ren, Shuhang
    Hou, Yucui
    Wu, Weize
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 359
  • [36] CO2 capture and conversion: Materials, activity, and stability
    Muller, Christoph
    Macarena, Paula Abdala
    Fedorov, Alexey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [37] Introduction to the Special Issue on CO2 Capture and Conversion
    Gong, Jinlong
    Flaherty, David W.
    Zhang, Xi
    Minton, Donna J.
    CCS CHEMISTRY, 2024, 6 (12): : 2845 - 2849
  • [38] Dream reactions of CO2 capture, conversion, and beyond
    Angenent, Lars
    Bunzel, H. Adrian
    Cargnello, Matteo
    Furst, Ariel
    Garcia, Susana
    Kopke, Michael
    Lassen, Klaus
    Milton, Ross D.
    Sousa, Diana Z.
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (12):
  • [39] Integrated CO2 capture and conversion to form syngas
    Kim, Yongwook
    Lees, Eric W.
    Donde, Chaitanya
    Jewlal, Andrew M. L.
    Waizenegger, Christopher E. B.
    de Hepcee, Basil M. W.
    Simpson, Grace L.
    Valji, Akshi
    Berlinguette, Curtis P.
    JOULE, 2024, 8 (11) : 3105 - 3125
  • [40] Carbonic anhydrase for CO2 capture, conversion and utilization
    Talekar, Sachin
    Jo, Byung Hoon
    Dordick, Jonathan S.
    Kim, Jungbae
    CURRENT OPINION IN BIOTECHNOLOGY, 2022, 74 : 230 - 240