Neuropathology Detector in EEG using Higher Order Statistics and Deep Learning

被引:0
|
作者
Seijas, Cesar [1 ]
Villazana, Sergio [1 ]
Montilla, Guillermo [2 ]
Perez, Egilda [1 ]
Montilla, Ricardo [2 ]
机构
[1] Univ Carabobo, Fac Ingn, Ctr Procesamiento Imagenes, Valencia, Venezuela
[2] Yttrium Technol Corp, Panama City, Panama
来源
INGENIERIA UC | 2021年 / 28卷 / 01期
关键词
EEG; higher order statistics; deep learning; pre-trained convolutional neural network Inception;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article presents a neuropathology detector, based on the patient's electroencephalogram (EEG). Detection is based on HOSA ("High Order Statistical Analysis") image classification of higher order statistics derived from time series corresponding to EEG of human patients. The classifier is a DL model ("Deep Learning") with the pretrained CNN ("Convolutional Neural Network") architecture: Inception. The CNN training and test set are HOSA images of non-linear and non-Gaussian segments, of signals corresponding to the selected channel of the EEG of patients with neuropathologies (specifically, epilepsy) or healthy. The performance of the classifier is very satisfactory, presenting an accuracy of approximately 94% in the detection of epilepsy.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 50 条
  • [31] On detection using filter banks and higher order statistics
    Sattar, F
    Salomonsson, G
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2000, 36 (04) : 1179 - 1189
  • [32] Segmentation of document images using higher order statistics
    Borges, Paulo Vinicius Koerich
    Mayer, Joceli
    Izquierdo, Ebroul
    2007 IEEE NINTH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, 2007, : 296 - +
  • [33] Autofocus for ISAR imaging using higher order statistics
    She, Zhishun
    Liu, Y.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (02) : 299 - 303
  • [34] AR model identification using higher order statistics
    Al-Smadi, Adnan M.
    2007 IEEE/ACS INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, VOLS 1 AND 2, 2007, : 588 - 591
  • [35] Adaptive filtering using Higher Order Statistics (HOS)
    Manseur, A., 2012, International Journal of Computer Science Issues (IJCSI) (09):
  • [36] Steganalysis using higher-order image statistics
    Lyu, Siwei
    Farid, Hany
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2006, 1 (01) : 111 - 119
  • [37] Classification of Renal Diseases using First Order and Higher Order Statistics
    Sharma, Komal
    Virmani, Jitendra
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 425 - 430
  • [38] A Deep Learning Neural Network Method Using Linear Eigenvalue Statistics for Schizophrenic EEG Data Classification
    Liu, Haichun
    Li, Lanzhen
    Ye, Yumeng
    Pan, Changchun
    Yang, Genke
    Chen, Tao
    Zhang, Tianhong
    Wang, Jijun
    Qiu, Caiming
    MATHEMATICS, 2023, 11 (23)
  • [39] Higher-order statistics
    Swami, A
    Giannakis, GB
    SIGNAL PROCESSING, 1996, 53 (2-3) : 89 - 91
  • [40] Emotion Recognition From EEG Using Higher Order Crossings
    Petrantonakis, Panagiotis C.
    Hadjileontiadis, Leontios J.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2010, 14 (02): : 186 - 197