New Approaches to Improve the Performance of Thin-Film Radial Junction Solar Cells Built Over Silicon Nanowire Arrays

被引:33
|
作者
Misra, Soumyadeep [1 ]
Yu, Linwei [1 ,2 ]
Foldyna, Martin [1 ]
Roca i Cabarrocas, Pere [1 ]
机构
[1] Ecole Polytech, CNRS, Phys Interfaces & Couches Minces Lab, F-91128 Palaiseau, France
[2] Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2015年 / 5卷 / 01期
关键词
Plasma-assisted vapor-liquid-solid (VLS); radial junction; silicon nanowire; thin-film solar cells; HIGH-EFFICIENCY;
D O I
10.1109/JPHOTOV.2014.2366688
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Owing to their enhanced light trapping and antireflection effects, silicon nanowires (SiNWs) provide an active research platform for a new generation of cost-effective and efficient solar cells. By optimizing the density of nanowires and depositing amorphous silicon (a-Si:H) on top of them, stable radial junction p-i-n devices with efficiencies in the range of 8-9% have already been realized, and there is still room for improvement. For instance, by modifying the SiNW/a-Si:H interface, an open-circuit voltage as high as 0.9 V has been achieved. In addition, increasing the bandgap of the window layer is found to be effective for blue-response enhancement. Modeling of equivalent structures with a-Si: H nanowires by rigorous-coupled wave analysis method shows that short-circuit current density can be improved up to 20 mA/cm(2), and changing the active material to crystalline silicon allows us to broaden the absorption to near infrared spectral region. Initial results with hydrogenated microcrystalline silicon as an active layer are also presented.
引用
收藏
页码:40 / 45
页数:6
相关论文
共 50 条
  • [31] Design of Schottky Contacts for Optimum Performance of Thin-Film Silicon Solar Cells
    Corpus-Mendoza, Asiel Neftali
    De Souza, Maria Merlyne
    Hamelmann, Frank U.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2015, 5 (01): : 22 - 27
  • [32] Investigation of temperature effect on the performance of nanostructured silicon thin-film solar cells
    School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing
    210094, China
    不详
    210016, China
    Kung Cheng Je Wu Li Hsueh Pao, 4 (879-883):
  • [33] Performance Analysis of Thin-Film Crystalline Silicon-on-Glass Solar Cells
    Grancic, B.
    Solntsev, S.
    Zeman, M.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (04): : 1144 - 1148
  • [34] Characterization of microcrystalline silicon thin-film solar cells
    Brammer, T
    Stiebig, H
    CONFERENCE RECORD OF THE TWENTY-NINTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 2002, 2002, : 1274 - 1277
  • [35] THIN-FILM POLYCRYSTALLINE SILICON SOLAR-CELLS
    BARNETT, AM
    HALL, RB
    RAND, JA
    KENDALL, CL
    FORD, DH
    SOLAR ENERGY MATERIALS, 1991, 23 (2-4): : 164 - 174
  • [36] Optical Simulation of Silicon Thin-Film Solar Cells
    Peters, M.
    Blaesi, B.
    Glunz, S. W.
    Aberle, A. G.
    Luther, J.
    Battaglia, C.
    INTERNATIONAL CONFERENCE ON MATERIALS FOR ADVANCED TECHNOLOGIES 2011, SYMPOSIUM O, 2012, 15 : 212 - 219
  • [37] Polycrystalline silicon on glass for thin-film solar cells
    Green, Martin A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (01): : 153 - 159
  • [38] Thin-film silicon solar cells on mullite substrates
    Slaoui, A
    Pihan, E
    Focsa, A
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (10) : 1542 - 1552
  • [39] Progress and limitations of thin-film silicon solar cells
    Matsui, Takuya
    Sai, Hitoshi
    Bidiville, Adrien
    Hsu, Hung-Jung
    Matsubara, Koji
    SOLAR ENERGY, 2018, 170 : 486 - 498
  • [40] Polycrystalline silicon on glass for thin-film solar cells
    Martin A. Green
    Applied Physics A, 2009, 96 : 153 - 159