Deep learning with perspective modeling for early detection of malignancy in mammograms

被引:16
|
作者
Kumar, Ashok [1 ]
Mukherjee, Saurabh [1 ]
Luhach, Ashish Kr [2 ]
机构
[1] Banasthati Vidyapith, Dept Comp Sci, Banasthali 304022, Rajasthan, India
[2] Papua New Guinea Univ Technol, Dept Elect & Commun Engn, Lae 411, Papua N Guinea
关键词
Benign; Malignant; Imaging modality; Invasive; Non-invasive; COMPUTER-AIDED DIAGNOSIS; BREAST-CANCER; CLASSIFICATION; ENSEMBLE; SCHEME; IMAGES; TISSUE;
D O I
10.1080/09720529.2019.1642624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Malignancy in human bodies are named behind the body part in which it invades exponentially like lungs cancer if malignancy is invading lungs. Growth of a cell is controlled by its centroid and it goes uncontrolled if it is behaving abnormally. Objective of this work is to deliver a classification system that can be used to classify breast images as a benign or malignant and if malignant then can further classify which type of malignancy that is non-invasive or invasive cancer. This model can also prescribe treatment for predicted malignant class with details like time taken, degree of seriousness, probability of curing by opted treatment because treatment of a breast cancer depends on type and stage of malignancy. To achieve higher or clinical usage accuracy by deploying advances of soft computing and image analysis like deep learning and deep neural networks to decrease breast cancer death as a concrete effort using mammograms by detecting breast cancer in an early stage.
引用
收藏
页码:627 / 643
页数:17
相关论文
共 50 条
  • [31] Detecting and classifying lesions in mammograms with Deep Learning
    Ribli, Dezso
    Horvath, Anna
    Unger, Zsuzsa
    Pollner, Peter
    Csabai, Istvan
    SCIENTIFIC REPORTS, 2018, 8
  • [32] Automated Breast Cancer Detection in Digital Mammograms of Various Densities via Deep Learning
    Suh, Yong Joon
    Jung, Jaewon
    Cho, Bum-Joo
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (04): : 1 - 11
  • [33] Detecting and classifying lesions in mammograms with Deep Learning
    Dezső Ribli
    Anna Horváth
    Zsuzsa Unger
    Péter Pollner
    István Csabai
    Scientific Reports, 8
  • [34] Detection of abnormalities in mammograms using deep features
    Tavakoli, Nasrin
    Karimi, Maryam
    Norouzi, Alireza
    Karimi, Nader
    Samavi, Shadrokh
    Soroushmehr, S. M. Reza
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 14 (5) : 5355 - 5367
  • [35] Detection of abnormalities in mammograms using deep features
    Nasrin Tavakoli
    Maryam Karimi
    Alireza Norouzi
    Nader Karimi
    Shadrokh Samavi
    S. M. Reza Soroushmehr
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 5355 - 5367
  • [36] Early Ransomware Detection with Deep Learning Models
    Davidian, Matan
    Kiperberg, Michael
    Vanetik, Natalia
    FUTURE INTERNET, 2024, 16 (08)
  • [37] Deep Vision: Lane Detection in ITS: A Deep Learning Segmentation Perspective
    Santhiya, P.
    Jebadurai, Immanuel JohnRaja
    Paulraj, Getzi Jeba Leelipushpam
    Jenefa, A.
    Karan, S. Kiruba
    Naveen, Edward, V
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 21 - 26
  • [38] Fast Fractal Modeling of Mammograms for Microcalcifications Detection
    Mohamed, Wael A.
    Alolfe, Mohamed A.
    Kadah, Yasser M.
    NRSC: 2009 NATIONAL RADIO SCIENCE CONFERENCE: NRSC 2009, VOLS 1 AND 2, 2009, : 190 - 195
  • [39] DCT FEATURES BASED MALIGNANCY AND ABNORMALITY TYPE DETECTION METHOD FOR MAMMOGRAMS
    Jaffar, M. Arfan
    Naveed, Nawazish
    Zia, Sultan
    Ahmed, Bilal
    Choi, Tae-Sun
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (09): : 5495 - 5513
  • [40] Deep Learning and Machine Learning for Early Detection of Stroke and Haemorrhage
    Al-Mekhlafi, Zeyad Ghaleb
    Senan, Ebrahim Mohammed
    Rassem, Taha H.
    Mohammed, Badiea Abdulkarem
    Makbol, Nasrin M.
    Alanazi, Adwan Alownie
    Almurayziq, Tariq S.
    Ghaleb, Fuad A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (01): : 775 - 796