Origins of multicellular evolvability in snowflake yeast

被引:112
|
作者
Ratcliff, William C. [1 ]
Fankhauser, Johnathon D. [2 ]
Rogers, David W. [3 ]
Greig, Duncan [3 ,4 ]
Travisano, Michael [5 ,6 ]
机构
[1] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA
[2] Univ Minnesota, St Paul, MN 55108 USA
[3] Max Planck Inst Evolut Biol, D-24306 Plon, Germany
[4] UCL, Dept Genet Evolut & Environm, London WC1N 6BT, England
[5] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA
[6] Univ Minnesota, BioTechnol Inst, St Paul, MN 55108 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
EXPERIMENTAL EVOLUTION; MULTILEVEL SELECTION; HIGH RELATEDNESS; SOCIAL AMEBA; COOPERATION; CHEATER; EXPRESSION; CONFLICT; ACE2; CELL;
D O I
10.1038/ncomms7102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex life has arisen through a series of 'major transitions' in which collectives of formerly autonomous individuals evolve into a single, integrated organism. A key step in this process is the origin of higher-level evolvability, but little is known about how higher-level entities originate and gain the capacity to evolve as an individual. Here we report a single mutation that not only creates a new level of biological organization, but also potentiates higher-level evolvability. Disrupting the transcription factor ACE2 in Saccharomyces cerevisiae prevents mother-daughter cell separation, generating multicellular 'snowflake' yeast. Snowflake yeast develop through deterministic rules that produce geometrically defined clusters that preclude genetic conflict and display a high broad-sense heritability for multicellular traits; as a result they are preadapted to multicellular adaptation. This work demonstrates that simple microevolutionary changes can have profound macroevolutionary consequences, and suggests that the formation of clonally developing clusters may often be the first step to multicellularity.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Conservation and evolvability in regulatory networks: The evolution of ribosomal regulation in yeast
    Tanay, A
    Regev, A
    Shamir, R
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (20) : 7203 - 7208
  • [22] On the origins of wine yeast
    Mortimer, R
    Polsinelli, M
    RESEARCH IN MICROBIOLOGY, 1999, 150 (03) : 199 - 204
  • [23] Evolution: Understanding the origins of facultative multicellular life cycles
    Conlin, Peter L.
    Ratcliff, William C.
    CURRENT BIOLOGY, 2023, 33 (09) : R356 - R358
  • [24] Apoptosis in snowflake yeast: novel trait, or side effect of toxic waste?
    Pentz, Jennifer T.
    Taylor, Bradford P.
    Ratcliff, William C.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2016, 13 (118)
  • [25] Meiosis in budding yeast and in multicellular eukaryotes - similarities and differences
    Loidl, J
    CHROMOSOMES TODAY, VOL 13, 2000, 13 : 123 - 137
  • [26] Modular, robust, and extendible multicellular circuit design in yeast
    Carignano, Alberto
    Chen, Dai Hua
    Mallory, Cannon
    Wright, R. Clay
    Seelig, Georg
    Klavins, Eric
    ELIFE, 2022, 11
  • [27] Adaptive Evolution of Industrial Brewer's Yeast Strains towards a Snowflake Phenotype
    Kayacan, Yeseren
    Van Mieghem, Thijs
    Delvaux, Filip
    Delvaux, Freddy R.
    Willaert, Ronnie
    FERMENTATION-BASEL, 2020, 6 (01):
  • [28] The origins of the Guinness stout yeast
    Daniel W. M. Kerruish
    Paul Cormican
    Elaine M. Kenny
    Jessica Kearns
    Eibhlin Colgan
    Chris A. Boulton
    Sandra N. E. Stelma
    Communications Biology, 7
  • [29] THE ORIGINS OF GENE INSTABILITY IN YEAST
    ROEDER, GS
    FARABAUGH, PJ
    CHALEFF, DT
    FINK, GR
    SCIENCE, 1980, 209 (4463) : 1375 - 1380
  • [30] The origins of the Guinness stout yeast
    Kerruish, Daniel W. M.
    Cormican, Paul
    Kenny, Elaine M.
    Kearns, Jessica
    Colgan, Eibhlin
    Boulton, Chris A.
    Stelma, Sandra N. E.
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)