Scaling properties of q-breathers in nonlinear acoustic lattices

被引:14
|
作者
Kanakov, O. I.
Flach, S.
Ivanchenko, M. V.
Mishagin, K. G.
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Nizhny Novgorod, Dept Radiophys, Nizhnii Novgorod 603950, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/j.physleta.2007.01.056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently q-breathers-time-periodic solutions which localize in the space of normal modes and maximize the energy density for some mode vector q(0)-were obtained for finite nonlinear lattices. We scale these solutions together with the size of the system to arbitrarily large lattices. The first finding is that the degree of localization depends only on intensive quantities and is size independent. Secondly a critical wave vector k(m) is identified, which depends on one effective nonlinearity parameter. q-breathers minimize the localization length at k(0) = k(m) and completely delocalize in the limit k(0) -> 0. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:416 / 420
页数:5
相关论文
共 50 条
  • [31] Scaling of chaos in strongly nonlinear lattices
    Mulansky, Mario
    CHAOS, 2014, 24 (02)
  • [32] Dynamics of metastable breathers in nonlinear chains in acoustic vacuum
    Sen, Surajit
    Mohan, T. R. Krishna
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [33] Discrete breathers in square lattices from delocalized nonlinear vibrational modes
    Naumov, E. K.
    Bebikhov, Yu. V.
    Ekomasov, E. G.
    Soboleva, E. G.
    Dmitriev, S. V.
    PHYSICAL REVIEW E, 2023, 107 (03)
  • [34] Discrete breathers in two-dimensional anisotropic nonlinear Schrodinger lattices
    Gomez-Gardenes, J.
    Floria, L. M.
    Bishop, A. R.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 31 - 43
  • [35] Collisions of Discrete Breathers in Nonlinear Schrodinger and Klein-Gordon Lattices
    Cuevas, J.
    Alvarez, A.
    Romero, F. R.
    Archilla, J. F. R.
    NONLINEAR SCIENCE AND COMPLEXITY, 2011, : 159 - 164
  • [36] Discrete breathers in nonlinear Schrodinger hypercubic lattices with arbitrary power nonlinearity
    Dorignac, J.
    Zhou, J.
    Cambell, D. K.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (04) : 486 - 504
  • [37] BREATHERS IN INHOMOGENEOUS NONLINEAR LATTICES: AN ANALYSIS VIA CENTER MANIFOLD REDUCTION
    James, Guillaume
    Sanchez-Rey, Bernardo
    Cuevas, Jesus
    REVIEWS IN MATHEMATICAL PHYSICS, 2009, 21 (01) : 1 - 59
  • [38] Scaling properties of energy spreading in nonlinear Hamiltonian two-dimensional lattices
    Mulansky, Mario
    Pikovsky, Arkady
    PHYSICAL REVIEW E, 2012, 86 (05):
  • [39] Discrete embedded solitary waves and breathers in one-dimensional nonlinear lattices
    Palmero, Faustino
    Molina, Mario, I
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    PHYSICS LETTERS A, 2022, 425
  • [40] Lower and upper estimates on the excitation threshold for breathers in discrete nonlinear Schrodinger lattices
    Cuevas, J.
    Karachalios, N. I.
    Palmero, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)