Quantum metrology matrix

被引:22
|
作者
Yuan, Haidong [1 ]
Fung, Chi-Hang Fred [2 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
[2] Huawei Technol Dusseldorf GmbH, German Res Ctr, D-80992 Dusseldorf, Germany
关键词
STATISTICAL DISTANCE; LIMIT;
D O I
10.1103/PhysRevA.96.012310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Various strategies exist in quantum metrology, such as with or without ancillary system, with a fixed or optimized measurement, with or without monitoring the environment, etc. Different set of tools are usually needed for different strategies. In this article, we provide a unified framework for these different settings, in particular we introduce a quantum metrology matrix and show that the precision limits of different settings can all be obtained from the trace or the trace norm of the quantum metrology matrix. Furthermore, the probe state enters into the quantum metrology matrix linearly, which makes the identification of the optimal probe states, one of the main quests in quantum metrology, much more efficient than conventional methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Quantum Fisher information width in quantum metrology
    Bo Liu
    GuoLong Li
    YanMing Che
    Jie Chen
    XiaoGuang Wang
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [32] Quantum metrology with full and fast quantum control
    Sekatski, Pavel
    Skotiniotis, Michalis
    Kolodynski, Jan
    Duer, Wolfgang
    QUANTUM, 2017, 1
  • [33] Quantum metrology with quantum-chaotic sensors
    Lukas J. Fiderer
    Daniel Braun
    Nature Communications, 9
  • [34] Quantum metrology with delegated tasks
    Shettell, Nathan
    Markham, Damian
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [35] Quantum metrology with entangled photons
    Sergienko, AV
    RECENT ADVANCES IN METROLOGY AND FUNDAMENTAL CONSTANTS, 2001, 146 : 715 - 746
  • [36] Estimation of gradients in quantum metrology
    Altenburg, Sanah
    Oszmaniec, Michal
    Wolk, Sabine
    Guhne, Otfried
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [37] Quantum metrology in correlated environments
    Xie, Dong
    Wang, An Min
    PHYSICS LETTERS A, 2014, 378 (30-31) : 2079 - 2084
  • [38] Quantum metrology with imperfect measurements
    Len, Yink Loong
    Gefen, Tuvia
    Retzker, Alex
    Kolodynski, Jan
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [39] Quantum-dense metrology
    Steinlechner, Sebastian
    Bauchrowitz, Joeran
    Meinders, Melanie
    Mueller-Ebhardt, Helge
    Danzmann, Karsten
    Schnabel, Roman
    NATURE PHOTONICS, 2013, 7 (08) : 626 - 629
  • [40] Magnetisation Reconstruction for Quantum Metrology
    Tehlan, Kartikay
    Bissolo, Michele
    Silvioli, Riccardo
    Oberreuter, Johannes
    Stier, Andreas
    Navab, Nassir
    Wendler, Thomas
    BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 166 - 171