Quantum metrology matrix

被引:22
|
作者
Yuan, Haidong [1 ]
Fung, Chi-Hang Fred [2 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
[2] Huawei Technol Dusseldorf GmbH, German Res Ctr, D-80992 Dusseldorf, Germany
关键词
STATISTICAL DISTANCE; LIMIT;
D O I
10.1103/PhysRevA.96.012310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Various strategies exist in quantum metrology, such as with or without ancillary system, with a fixed or optimized measurement, with or without monitoring the environment, etc. Different set of tools are usually needed for different strategies. In this article, we provide a unified framework for these different settings, in particular we introduce a quantum metrology matrix and show that the precision limits of different settings can all be obtained from the trace or the trace norm of the quantum metrology matrix. Furthermore, the probe state enters into the quantum metrology matrix linearly, which makes the identification of the optimal probe states, one of the main quests in quantum metrology, much more efficient than conventional methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Matrix Product States for Quantum Metrology
    Jarzyna, Marcin
    Demkowicz-Dobrzanski, Rafal
    PHYSICAL REVIEW LETTERS, 2013, 110 (24)
  • [2] Quantum Fisher information matrix of quantum metrology in a Heisenberg XXZ model
    Ben Hammou, Rachid
    El Achab, Abdelfattah
    Habiballah, Nabil
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2024, 11 (02) : 263 - 274
  • [3] Quantum metrology
    Giovannetti, V
    Lloyd, S
    Maccone, L
    PHYSICAL REVIEW LETTERS, 2006, 96 (01)
  • [4] Quantum metrology
    项国勇
    郭光灿
    Chinese Physics B, 2013, 22 (11) : 95 - 104
  • [5] Quantum metrology
    Xiang Guo-Yong
    Guo Guang-Can
    CHINESE PHYSICS B, 2013, 22 (11)
  • [6] Metrology for Quantum Communication
    Piacentini, F.
    Adenier, G.
    Traina, P.
    Avella, A.
    Brida, G.
    Degiovanni, I. P.
    Gramegna, M.
    Berchera, I. Ruo
    Genovese, M.
    2015 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2015,
  • [7] Cryptographic quantum metrology
    Huang, Zixin
    Macchiavello, Chiara
    Maccone, Lorenzo
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [8] Quantum Critical Metrology
    Frerot, Irenee
    Roscilde, Tommaso
    PHYSICAL REVIEW LETTERS, 2018, 121 (02)
  • [9] Photonic quantum metrology
    Polino, Emanuele
    Valeri, Mauro
    Spagnolo, Nicolo
    Sciarrino, Fabio
    AVS QUANTUM SCIENCE, 2020, 2 (02):
  • [10] Quantum imaging and metrology
    Lee, H
    Kok, P
    Dowling, JP
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 223 - 228