Tumor Margin Classification of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks

被引:15
|
作者
Halicek, Martin [1 ,2 ,3 ]
Little, James V. [4 ]
Wang, Xu [5 ]
Patel, Mihir [6 ,7 ]
Griffith, Christopher C. [4 ]
Chen, Amy Y. [6 ,7 ]
Fei, Baowei [1 ,2 ,7 ,8 ,9 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[3] Augusta Univ, Med Coll Georgia, Augusta, GA USA
[4] Emory Univ, Sch Med, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
[5] Emory Univ, Sch Med, Dept Hematol & Med Oncol, Atlanta, GA USA
[6] Emory Univ, Sch Med, Dept Otolaryngol, Atlanta, GA 30322 USA
[7] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[8] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[9] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
关键词
Hyperspectral imaging; convolutional neural network; deep learning; cancer margin detection; intraoperative imaging; head and neck surgery; head and neck cancer; SQUAMOUS-CELL CARCINOMA;
D O I
10.1117/12.2293167
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the largest factors affecting disease recurrence after surgical cancer resection is negative surgical margins. Hyperspectral imaging (HSI) is an optical imaging technique with potential to serve as a computer aided diagnostic tool for identifying cancer in gross ex-vivo specimens. We developed a tissue classifier using three distinct convolutional neural network (CNN) architectures on HSI data to investigate the ability to classify the cancer margins from ex-vivo human surgical specimens, collected from 20 patients undergoing surgical cancer resection as a preliminary validation group. A new approach for generating the HSI ground truth using a registered histological cancer margin is applied in order to create a validation dataset. The CNN-based method classifies the tumor-normal margin of squamous cell carcinoma (SCCa) versus normal oral tissue with an area under the curve (AUC) of 0.86 for inter-patient validation, performing with 81% accuracy, 84% sensitivity, and 77% specificity. Thyroid carcinoma cancer-normal margins are classified with an AUC of 0.94 for inter-patient validation, performing with 90% accuracy, 91% sensitivity, and 88% specificity. Our preliminary results on a limited patient dataset demonstrate the predictive ability of HSI-based cancer margin detection, which warrants further investigation with more patient data and additional processing techniques to optimize the proposed deep learning method.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Cell Classification Using Convolutional Neural Networks in Medical Hyperspectral Imagery
    Li, Xiang
    Li, Wei
    Xu, Xiaodong
    Hu, Wei
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 501 - 504
  • [22] Explainable convolutional neural networks for assessing head and neck cancer histopathology
    Marion Dörrich
    Markus Hecht
    Rainer Fietkau
    Arndt Hartmann
    Heinrich Iro
    Antoniu-Oreste Gostian
    Markus Eckstein
    Andreas M. Kist
    Diagnostic Pathology, 18
  • [23] Explainable convolutional neural networks for assessing head and neck cancer histopathology
    Doerrich, Marion
    Hecht, Markus
    Fietkau, Rainer
    Hartmann, Arndt
    Iro, Heinrich
    Gostian, Antoniu-Oreste
    Eckstein, Markus
    Kist, Andreas M.
    DIAGNOSTIC PATHOLOGY, 2023, 18 (01)
  • [24] Improved Convolutional Neural Networks for Hyperspectral Image Classification
    Kalita, Shashanka
    Biswas, Mantosh
    RECENT DEVELOPMENTS IN MACHINE LEARNING AND DATA ANALYTICS, 2019, 740 : 397 - 410
  • [25] Deformable Convolutional Neural Networks for Hyperspectral Image Classification
    Zhu, Jian
    Fang, Leyuan
    Ghamisi, Pedram
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (08) : 1254 - 1258
  • [26] GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL DATA CLASSIFICATION
    Shahraki, Farideh Foroozandeh
    Prasad, Saurabh
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 968 - 972
  • [27] Morphological Convolutional Neural Networks for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Mondal, Ranjan
    Paoletti, Mercedes E.
    Haut, Juan M.
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8689 - 8702
  • [28] Deep Convolutional Neural Networks for Hyperspectral Image Classification
    Hu, Wei
    Huang, Yangyu
    Wei, Li
    Zhang, Fan
    Li, Hengchao
    JOURNAL OF SENSORS, 2015, 2015
  • [29] GROUP CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 639 - 643
  • [30] Quaternion convolutional neural networks for hyperspectral image classification
    Zhou, Heng
    Zhang, Xin
    Zhang, Chunlei
    Ma, Qiaoyu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123