Thermoelectromechanical effects in relaxed-shape graphene and band structures of graphene quantum dots

被引:10
|
作者
Prabhakar, Sanjay [1 ]
Melnik, Roderick [1 ]
Bonilla, Luis L. [2 ]
Badu, Shyam [1 ]
机构
[1] Wilfrid Laurier Univ, Lab M2NeT, Interdisciplinary Res Inst MS2Discovery, Waterloo, ON N2L 3C5, Canada
[2] Univ Carlos III Madrid, Gregorio Millan Inst, Leganes 28911, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
SINGLE-LAYER GRAPHENE; SUSPENDED GRAPHENE; SHEETS;
D O I
10.1103/PhysRevB.90.205418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the in-plane oscillations of relaxed-shape graphene due to externally applied tensile edge stress along both the armchair and zigzag directions. We show that the total elastic energy density is enhanced with temperature for the case of applied tensile edge stress along the zigzag direction. Thermoelectromechanical effects are treated via pseudomorphic vector potentials to analyze the influence of these coupled effects on the band structures of bilayer-graphene quantum dots. We report that the level crossing between the ground and first-excited states in the localized edge states can be achieved with accessible values of temperature. In particular, the level-crossing point extends to higher temperatures with decreasing externally applied tensile edge stress along the armchair direction. This kind of level crossing is absent in the states formed at the center of the graphene sheet due to the presence of threefold symmetry.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Magnetism of graphene quantum dots
    Sun, Yuanyuan
    Zheng, Yongping
    Pan, Hongzhe
    Chen, Jie
    Zhang, Weili
    Fu, Lin
    Zhang, Kaiyu
    Tang, Nujiang
    Du, Youwei
    NPJ QUANTUM MATERIALS, 2017, 2
  • [32] Hexagonal graphene quantum dots
    Ghosh, S.
    Schwingenschlogl, U.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (01):
  • [33] Spintronics with graphene quantum dots
    Droth, Matthias
    Burkard, Guido
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (01): : 75 - 90
  • [34] Graphene based quantum dots
    Zhang, H. G.
    Hu, H.
    Pan, Y.
    Mao, J. H.
    Gao, M.
    Guo, H. M.
    Du, S. X.
    Greber, T.
    Gao, H.-J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (30)
  • [35] Graphene Quantum Dots for Radiotherapy
    Ruan, Jing
    Wang, Ying
    Li, Fang
    Jia, Renbing
    Zhou, Guangming
    Shao, Chunlin
    Zhu, Liqi
    Cui, Malin
    Yang, Da-Peng
    Ge, Shengfang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (17) : 14342 - 14355
  • [36] Magnetism of graphene quantum dots
    Yuanyuan Sun
    Yongping Zheng
    Hongzhe Pan
    Jie Chen
    Weili Zhang
    Lin Fu
    Kaiyu Zhang
    Nujiang Tang
    Youwei Du
    npj Quantum Materials, 2
  • [37] Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots
    Bradley, Siobhan J.
    Kroon, Renee
    Laufersky, Geoffry
    Roding, Magnus
    Goreham, Renee V.
    Gschneidtner, Tina
    Schroeder, Kathryn
    Moth-Poulsen, Kasper
    Andersson, Mats
    Nann, Thomas
    MICROCHIMICA ACTA, 2017, 184 (03) : 871 - 878
  • [38] Femtosecond transient absorption spectroscopic study on the electronic structures of graphene oxides, graphene oxide nanoribbons and graphene quantum dots
    Chen, Xin
    LI, Zheng-Shun
    Wang, Hai-Yu
    Wang, Lei
    Yue, Yuan-Yuan
    Zhang, Yan-Xia
    DU, Jiang-Lin
    Wang, Yan
    Sun, Hong-Bo
    OPTICAL MATERIALS EXPRESS, 2021, 11 (10): : 3486 - 3495
  • [39] Colloidal Graphene Quantum Dots
    Li, Liang-shi
    Yan, Xin
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (17): : 2572 - 2576
  • [40] Graphene Quantum Dots-Band-Aids Used for Wound Disinfection
    Sun, Hanjun
    Gao, Nan
    Dong, Kai
    Ren, Jinsong
    Qu, Xiaogang
    ACS NANO, 2014, 8 (06) : 6202 - 6210