A posteriori error estimate for discontinuous Galerkin finite element method on polytopal mesh

被引:4
|
作者
Cui, Jintao [1 ]
Cao, Fuzheng [2 ]
Sun, Zhengjia [3 ]
Zhu, Peng [4 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan, Shandong, Peoples R China
[3] Shenzhen Univ, Coll Econ, Shenzhen 518060, Guangdong, Peoples R China
[4] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
a posteriori error estimate; discontinuous Galerkin methods; polytopal mesh; second-order elliptic problems; ELLIPTIC PROBLEMS; DIFFUSION-PROBLEMS; CONVERGENCE; APPROXIMATIONS; SUPERCONVERGENCE; CONSTRUCTION;
D O I
10.1002/num.22443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we derive a posteriori error estimates for discontinuous Galerkin finite element method on polytopal mesh. We construct a reliable and efficient a posteriori error estimator on general polygonal or polyhedral meshes. An adaptive algorithm based on the error estimator and DG method is proposed to solve a variety of test problems. Numerical experiments are performed to illustrate the effectiveness of the algorithm.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 50 条