Topology Optimization Using Multiscale Finite Element Method for High-Contrast Media

被引:10
|
作者
Lazarov, Boyan S. [1 ]
机构
[1] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark
关键词
Topology optimization; Multiscale finite element method; High contrast media; DOMAIN DECOMPOSITION PRECONDITIONERS;
D O I
10.1007/978-3-662-43880-0_38
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The focus of this paper is on the applicability of multiscale finite element coarse spaces for reducing the computational burden in topology optimization. The coarse spaces are obtained by solving a set of local eigenvalue problems on overlapping patches covering the computational domain. The approach is relatively easy for parallelization, due to the complete independence of the subproblems, and ensures contrast independent convergence of the iterative state problem solvers. Several modifications for reducing the computational cost in connection to topology optimization are discussed in details. The method is exemplified in minimum compliance designs for linear elasticity.
引用
收藏
页码:339 / 346
页数:8
相关论文
共 50 条
  • [1] Multiscale topology optimization of electromagnetic metamaterials using a high-contrast homogenization method
    Murai, Naoki
    Noguchi, Yuki
    Matsushima, Kei
    Yamada, Takayuki
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 403
  • [2] A NEW MULTISCALE FINITE ELEMENT METHOD FOR HIGH-CONTRAST ELLIPTIC INTERFACE PROBLEMS
    Chu, C-C.
    Graham, I. G.
    Hou, T-Y.
    MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 1915 - 1955
  • [3] A generalized multiscale finite element method for high-contrast single-phase flow problems in anisotropic media
    Ren, Jun
    Presho, Michael
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 277 : 202 - 214
  • [4] Efficient structure topology optimization by using the multiscale finite element method
    Hui Liu
    Yiqiang Wang
    Hongming Zong
    Michael Yu Wang
    Structural and Multidisciplinary Optimization, 2018, 58 : 1411 - 1430
  • [5] Efficient structure topology optimization by using the multiscale finite element method
    Liu, Hui
    Wang, Yiqiang
    Zong, Hongming
    Wang, Michael Yu
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 58 (04) : 1411 - 1430
  • [6] On time integrators for Generalized Multiscale Finite Element Methods applied to advection-diffusion in high-contrast multiscale media
    Xie, Wei
    Galvis, Juan
    Yang, Yin
    Huang, Yunqing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 460
  • [7] Multiscale finite element methods for high-contrast problems using local spectral basis functions
    Efendiev, Yalchin
    Galvis, Juan
    Wu, Xiao-Hui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) : 937 - 955
  • [8] Constraint Energy Minimizing Generalized Multiscale Finite Element Method for High-Contrast Linear Elasticity Problem
    Fu, Shubin
    Chung, Eric T.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (03) : 809 - 827
  • [9] Numerical Multiscale Methods for Waves in High-Contrast Media
    Verfürth B.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2024, 126 (1) : 37 - 65
  • [10] A Finite Element Method for High-Contrast Interface Problems with Error Estimates Independent of Contrast
    Johnny Guzmán
    Manuel A. Sánchez
    Marcus Sarkis
    Journal of Scientific Computing, 2017, 73 : 330 - 365