A generalized multiscale finite element method for high-contrast single-phase flow problems in anisotropic media

被引:0
|
作者
Ren, Jun [1 ,2 ]
Presho, Michael [3 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Texas A&M Univ, Inst Sci Computat, College Stn, TX 77843 USA
[3] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
Generalized multiscale finite element method; High-contrast permeability; Anisotropic media; Single-phase flow; ELLIPTIC PROBLEMS; SIMULATION;
D O I
10.1016/j.cam.2014.09.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe a systematic framework called the Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations, and we investigate the application of this framework to the high-contrast flow problems in anisotropic media. We present a multiscale model reduction technique for constructing a reduced-dimension space based on localized spectral decompositions. We discuss the multiscale coarse space both in parameter-independent and parameter-dependent cases, Furthermore, we highlight the relation between the solution convergence and the spectral behavior of the eigenvalue problems. A variety of numerical examples are presented to illustrate the performance of the proposed methodology. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:202 / 214
页数:13
相关论文
共 50 条
  • [1] Topology Optimization Using Multiscale Finite Element Method for High-Contrast Media
    Lazarov, Boyan S.
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2013, 2014, 8353 : 339 - 346
  • [2] A NEW MULTISCALE FINITE ELEMENT METHOD FOR HIGH-CONTRAST ELLIPTIC INTERFACE PROBLEMS
    Chu, C-C.
    Graham, I. G.
    Hou, T-Y.
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 1915 - 1955
  • [3] AN ADAPTIVE GENERALIZED MULTISCALE DISCONTINUOUS GALERKIN METHOD FOR HIGH-CONTRAST FLOW PROBLEMS
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    [J]. MULTISCALE MODELING & SIMULATION, 2018, 16 (03): : 1227 - 1257
  • [4] On time integrators for Generalized Multiscale Finite Element Methods applied to advection–diffusion in high-contrast multiscale media
    Xie, Wei
    Galvis, Juan
    Yang, Yin
    Huang, Yunqing
    [J]. Journal of Computational and Applied Mathematics, 2025, 460
  • [5] Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems
    Efendiev, Yalchin
    Jin, Bangti
    Presho, Michael
    Tan, Xiaosi
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (01) : 259 - 286
  • [6] Constraint Energy Minimizing Generalized Multiscale Finite Element Method for High-Contrast Linear Elasticity Problem
    Fu, Shubin
    Chung, Eric T.
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (03) : 809 - 827
  • [7] Generalized Multiscale Finite Element method for multicontinua unsaturated flow problems in fractured porous media
    Spiridonov, Denis
    Vasilyeva, Maria
    Chung, Eric T.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 370
  • [8] Robust multilevel solvers for high-contrast anisotropic multiscale problems
    Willems, J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 251 : 47 - 60
  • [9] A Finite Element Method for High-Contrast Interface Problems with Error Estimates Independent of Contrast
    Johnny Guzmán
    Manuel A. Sánchez
    Marcus Sarkis
    [J]. Journal of Scientific Computing, 2017, 73 : 330 - 365
  • [10] An Adaptive Generalized Multiscale Finite Element Method Based Two-Grid Preconditioner for Large Scale High-Contrast Linear Elasticity Problems
    Yanfang Yang
    Shubin Fu
    Eric T. Chung
    [J]. Journal of Scientific Computing, 2022, 92