A note on converse Lyapunov-Krasovskii theorems for nonlinear neutral systems in Sobolev spaces

被引:0
|
作者
Efimov, Denis [1 ,2 ]
Fridman, Emilia [3 ]
机构
[1] Univ Lille, CNRS, INRIA, CRIStAL,UMR 9189, F-59000 Lille, France
[2] ITMO Univ, St Petersburg 197101, Russia
[3] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 16期
基金
以色列科学基金会;
关键词
Neutral time-delay systems; Lyapunov-Krasovskii functional; Stabilty; TO-STATE STABILITY; TIME-DELAY;
D O I
10.1016/j.ifacol.2019.11.748
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of existence of a Lyapunov-Krasovskii functional (LKF) for nonlinear neutral type time-delay systems is revisited considering the uniform stability analysis and the LKF in a Sobolev space of absolutely continuous functions with bounded derivatives. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [21] LYAPUNOV-KRASOVSKII STABILITY THEOREM FOR FRACTIONAL SYSTEMS WITH DELAY
    Baleanu, D.
    Ranjbar N, A.
    Sadati R, S. J.
    Delavari, R. H.
    Abdeljawad , T.
    Gejji, V.
    ROMANIAN JOURNAL OF PHYSICS, 2011, 56 (5-6): : 636 - 643
  • [22] Lyapunov-Krasovskii functionals for linear systems with input delay
    Aliseyko, A. N.
    Kharitonov, V. L.
    IFAC PAPERSONLINE, 2019, 52 (18): : 19 - 24
  • [23] Lyapunov-Krasovskii functionals for scalar neutral type time delay equations
    Velazquez-Velazquez, J. E.
    Kharitonov, V. L.
    SYSTEMS & CONTROL LETTERS, 2009, 58 (01) : 17 - 25
  • [24] Stabilization of Lur'e-type nonlinear control systems by Lyapunov-Krasovskii functionals
    Shatyrko, Andrei
    Diblik, Josef
    Khusainov, Denys
    Ruzickova, Miroslava
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [25] Stabilization of Lur’e-type nonlinear control systems by Lyapunov-Krasovskii functionals
    Andrei Shatyrko
    Josef Diblík
    Denys Khusainov
    Miroslava Růžičková
    Advances in Difference Equations, 2012
  • [26] Absolute stability and Lyapunov-Krasovskii functionals for switched nonlinear systems with time-delay
    Aleksandrov, A. Yu
    Mason, Oliver
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (08): : 4381 - 4394
  • [27] Lyapunov-Krasovskii functionals for switched nonlinear input delay systems under asynchronous switching
    Wang, Yue-E
    Sun, Xi-Ming
    Wu, Bao-wei
    AUTOMATICA, 2015, 61 : 126 - 133
  • [28] Lyapunov-Krasovskii approach to robust stability of time delay systems
    Kharitonov, VL
    Zhabko, AP
    SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 477 - 481
  • [29] Lyapunov-Krasovskii Characterizations of Stability Notions for Switching Retarded Systems
    Haidar, Ihab
    Pepe, Pierdomenico
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (01) : 437 - 443
  • [30] Analysis of Lyapunov-Krasovskii stability for dynamical systems with time delay
    Zhang, Xiaoyan
    Sun, Jianqiao
    Ding, Qian
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2013, 47 (05): : 72 - 76