Cramer-Rao bound analysis of wideband source localization and DOA estimation

被引:13
|
作者
Yip, L [1 ]
Chen, JC [1 ]
Hudson, RE [1 ]
Yao, K [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
source localization; DOA estimation; cramer-rao bound; effective beamwidth;
D O I
10.1117/12.453837
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we derive the Cramer-Rao Bound(CRB) for wideband source localization and DOA estimation. The resulting CRB formula can be decomposed into two terms: one that depends on the signal characteristic and one that depends on the array geometry. For a uniformly spaced circular array(UCA), a concise analytical form of the CRB can be given by using some algebraic approximation. We further define a DOA beamwidth based on the resulting CRB formula. The DOA beamwidth can be used to design the sampling angular spacing for the Maximum-likelihood(ML) algorithm. For a randomly distributed array, we use an elliptical model to determine the largest and smallest effective beamwidth. The effective bearnwidth and the CRB analysis of source localization allow us to design an efficient. algorithm for the ML estimator. Finally, our simulation results of the Approximated Maximum Likelihood(AML) algorithm are demonstrated to match well to the CRB analysis at high SNR.
引用
收藏
页码:304 / 316
页数:13
相关论文
共 50 条
  • [21] Analysis of the Cramer-Rao Bound in the Joint Estimation of Astrometry and Photometry
    Mendez, Rene A.
    Silva, Jorge F.
    Orostica, Rodrigo
    Lobos, Rodrigo
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2014, 126 (942) : 798 - 810
  • [22] CRAMER-RAO BOUND ANALYSIS OF DISTRIBUTED DOA ESTIMATION EXPLOITING MIXED-PRECISION COVARIANCE MATRIX
    Chowdhury, Md Waqeeb T. S.
    Zhang, Yimin D.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5163 - 5167
  • [23] Cramer-Rao Bounds for Underdetermined Source Localization
    Koochakzadeh, Ali
    Pal, Piya
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (07) : 919 - 923
  • [24] Performance of different metaheuristics in EEG source localization compared to the Cramer-Rao bound
    Escalona-Vargas, Diana I.
    Gutierrez, David
    Lopez-Arevalo, Ivan
    NEUROCOMPUTING, 2013, 120 : 597 - 609
  • [25] Lognormal Mixture Cramer-Rao Lower Bound for Localization
    Buyukcorak, Saliha
    Kurt, Gunes Karabulut
    Yongacoglu, Abbas
    2015 INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2015, : 132 - 136
  • [26] Cramer-Rao bound for bearing estimation with bias correction
    Xu, Wen
    2007 OCEANS, VOLS 1-5, 2007, : 1894 - 1898
  • [27] The Cramer-Rao bound for the estimation of noisy phase signals
    Zoubir, AM
    Taleb, A
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3101 - 3104
  • [28] The modified Cramer-Rao bound in vector parameter estimation
    Gini, F
    Reggiannini, R
    Mengali, U
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (01) : 52 - 60
  • [29] The Cramer-Rao lower bound for towed array shape estimation with a single source
    Smith, JJ
    Leung, YH
    Cantoni, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (04) : 1033 - 1036
  • [30] Stochastic Cramer-Rao Bound for Noncircular Sources' DOA Estimation in Alpha-Stable Noise
    Zhang, Jinfeng
    Qiu, Tianshuang
    2017 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS (ICCSN), 2017, : 880 - 887