Cramer-Rao bound analysis of wideband source localization and DOA estimation

被引:13
|
作者
Yip, L [1 ]
Chen, JC [1 ]
Hudson, RE [1 ]
Yao, K [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
source localization; DOA estimation; cramer-rao bound; effective beamwidth;
D O I
10.1117/12.453837
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we derive the Cramer-Rao Bound(CRB) for wideband source localization and DOA estimation. The resulting CRB formula can be decomposed into two terms: one that depends on the signal characteristic and one that depends on the array geometry. For a uniformly spaced circular array(UCA), a concise analytical form of the CRB can be given by using some algebraic approximation. We further define a DOA beamwidth based on the resulting CRB formula. The DOA beamwidth can be used to design the sampling angular spacing for the Maximum-likelihood(ML) algorithm. For a randomly distributed array, we use an elliptical model to determine the largest and smallest effective beamwidth. The effective bearnwidth and the CRB analysis of source localization allow us to design an efficient. algorithm for the ML estimator. Finally, our simulation results of the Approximated Maximum Likelihood(AML) algorithm are demonstrated to match well to the CRB analysis at high SNR.
引用
收藏
页码:304 / 316
页数:13
相关论文
共 50 条
  • [1] Cramer-Rao Bound for Wideband DOA Estimation with Uncorrelated Sources
    Liang, Yibao
    Shen, Qing
    Cui, Wei
    Liu, Wei
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [2] Stochastic Cramer-Rao Bound Analysis for DOA Estimation in Spherical Harmonics Domain
    Kumar, Lalan
    Hegde, Rajesh M.
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (08) : 1030 - 1034
  • [3] Cramer-Rao Bound Analysis of Underdetermined Wideband DOA Estimation Under the Subband Model via Frequency Decomposition
    Liang, Yibao
    Cui, Wei
    Shen, Qing
    Liu, Wei
    Wu, Siliang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 4132 - 4148
  • [4] Stochastic Cramer-Rao bound for noncircular signals with application to DOA estimation
    Delmas, JP
    Abeida, H
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (11) : 3192 - 3199
  • [5] Cramer-Rao Bound for DOA Estimation Exploiting Multiple Frequency Pairs
    Liang, Yibao
    Cui, Wei
    Shen, Qing
    Liu, Wei
    Wu, Hantian
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1210 - 1214
  • [6] DOA estimation for Cylindrical Antenna Arrays using Cramer-Rao Lower Bound Analysis
    Wang, Jiahao
    Yang, Peizhuo
    Mouthaan, Koen
    2023 17TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2023,
  • [7] Cramer-Rao Bound Analysis for MUSIC-like Source Number Estimation in Indoor Sound Source Localization
    Song, Xiyu
    Qin, Qing'sheng
    Wang, Shiqi
    Yao, Fangzhi
    Wang, Mei
    Qiu, Hongbing
    2024 INTERNATIONAL CONFERENCE ON UBIQUITOUS COMMUNICATION, UCOM 2024, 2024, : 217 - 226
  • [8] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304
  • [9] Stochastic Cramer-Rao Bound for DOA Estimation With a Mixture of Circular and Noncircular Signals
    Cai, Jingjing
    Liang, Yibao
    Liu, Wei
    Dong, Yang-Yang
    IEEE ACCESS, 2020, 8 : 226370 - 226379
  • [10] Cramer-Rao Bound on Passive Source Localization for General Gaussian Noise
    Li, Sha
    Daku, Brian L. F.
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2010, E93A (05) : 914 - 925