Constructing a composite lithium anode for high-performance solid-state lithium-metal batteries via in-situ alloying reaction

被引:4
|
作者
Wei, Jie [1 ]
Yang, Zuguang [1 ]
Li, Zongyang [2 ]
Lu, Guanjie [1 ]
Xu, Chaohe [1 ,3 ]
机构
[1] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Mat Sci & Engn, Chongqing, Peoples R China
[3] Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Solid-state lithium-metal battery; composite lithium anode; solid-state interface; dendrite-free; INTERFACIAL RESISTANCE; ELECTROLYTE; TEMPERATURE; CHEMISTRY;
D O I
10.1142/S1793604722500151
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solid-state lithium-metal batteries (SSLMBs) with ceramic Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolytes are widely deemed to be a viable candidate for high-energy storage devices with attractive safety. However, inadequate contact, dramatical volume variation and dendrite growth severally impede their practical applications. Herein, a composite Li metal anode consisting of LiF and CaLi2 alloy is constructed by in-situ alloying reaction of Li and minute amount of CaF2. The as-formed CaLi2 alloy and LiF in the composite Li metal anode not only improve the wettability of molten lithium to LLZTO by decreasing the surface tension, but also achieve the intimate contact and avoid anode volume collapse. The interfacial resistance is successfully decreased from 405.9 to 12.9 Omega cm(2) by adopting the composite Li as electrodes. The symmetric cells can cycle at 0.1 mA cm(-2) for 1000 h, and cycle at 0.2 mA cm(-2) for 580 h. In addition, SSLMB by using LiFePO4 (LFP) as the cathode exhibits a capacity retention of 70.9% after 125 cycles at 0.3 C as well as good rate performance. This work puts forward a rational and economic strategy to pave the path for the advance of SSLMBs.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] In-Situ Plasticized LLZTO-PVDF Composite Electrolytes for High-Performance Solid-State Lithium Metal Batteries
    Yu, Xinjie
    Zhai, Pengbo
    Zhao, Ning
    Guo, Xiangxin
    BATTERIES-BASEL, 2023, 9 (05):
  • [2] Enabling an electron/ion conductive composite lithium anode for solid-state lithium-metal batteries with garnet electrolyte
    Wei, Jie
    Yang, Zuguang
    Lu, Guanjie
    Hu, Xiaolin
    Li, Zongyang
    Wang, Ronghua
    Xu, Chaohe
    ENERGY STORAGE MATERIALS, 2022, 53 : 204 - 211
  • [3] Diversifying Ion-Transport Pathways of Composite Solid Electrolytes for High-Performance Solid-State Lithium-Metal Batteries
    Han, Wei
    Li, Guang
    Zhang, Jingjing
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (21) : 27280 - 27290
  • [4] Hybrid Crosslinked Solid Polymer Electrolyte via In-Situ Solidification Enables High-Performance Solid-State Lithium Metal Batteries
    Mu, Kexin
    Wang, Dai
    Dong, Weiliang
    Liu, Qiang
    Song, Zhennuo
    Xu, Weijian
    Yao, Pingping
    Chen, Yin'an
    Yang, Bo
    Li, Cuihua
    Tian, Lei
    Zhu, Caizhen
    Xu, Jian
    ADVANCED MATERIALS, 2023, 35 (47)
  • [5] A high-performance solid-state polymer electrolyte for lithium-metal battery
    Wang, Yumei
    Yi, Qiang
    Xu, Xiaoyu
    Lu, Li
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)
  • [6] Solid-state rigid polymer composite electrolytes with in-situ formed nano-crystalline lithium ion pathways for lithium-metal batteries
    Wei, Zhuangzhuang
    Huang, Jun
    Liao, Zhu
    Hu, Anyi
    Zhang, Zhengxi
    Orita, Akihiro
    Saito, Nagahiro
    Yang, Li
    ENERGY STORAGE MATERIALS, 2024, 72
  • [7] In-situ fabricated succinonitrile-based composite electrolyte for high-performance and safe solid-state lithium batteries
    Chen, Shiyao
    Wang, Shuping
    Peng, Qingkui
    Wei, Zesen
    Cheng, Siyuan
    Fang, Zheng
    Duan, Peiyu
    Cheng, Yuan
    Cheng, Yifeng
    Jin, Kaiqiang
    Jiang, Lihua
    Wang, Qingsong
    JOURNAL OF POWER SOURCES, 2024, 604
  • [8] Microrod Patterned Lithium Metal Surface for High-performance Solid-state Lithium Batteries
    Zhang, Xiang
    Sun, Chunwen
    CHEMISTRY LETTERS, 2022, 51 (08) : 891 - 893
  • [9] Interelectrode Talk in Solid-State Lithium-Metal Batteries
    Ma, Jun
    Zhang, Shu
    Zheng, Yue
    Huang, Tianpeng
    Sun, Fu
    Dong, Shanmu
    Cui, Guanglei
    ADVANCED MATERIALS, 2023, 35 (38)
  • [10] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Choudhury, Snehashis
    Stalin, Sanjuna
    Vu, Duylinh
    Warren, Alexander
    Deng, Yue
    Biswal, Prayag
    Archer, Lynden A.
    NATURE COMMUNICATIONS, 2019, 10 (1)