A high-fidelity approach towards simulation of pool boiling

被引:46
|
作者
Yazdani, Miad [1 ]
Radcliff, Thomas [1 ]
Soteriou, Marios [1 ]
Alahyari, Abbas A. [1 ]
机构
[1] United Technol Res Ctr, E Hartford, CT 06108 USA
关键词
NUCLEATION SITE DENSITY; HEAT-TRANSFER; NUMERICAL-SIMULATION; SINGLE-BUBBLE; COMPREHENSIVE MODEL; DEPARTURE DIAMETER; PURE LIQUIDS; SURFACE; DYNAMICS; VOLUME;
D O I
10.1063/1.4940042
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The microscale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:30
相关论文
共 50 条
  • [11] Towards a Flexible and High-Fidelity Approach to Distributed DNN Training Emulation
    Liu, Banruo
    Ojewale, Mubarak Adetunji
    Ding, Yuhan
    Canini, Marco
    PROCEEDINGS OF THE 15TH ACM SIGOPS ASIA-PACIFIC WORKSHOP ON SYSTEMS, APSYS 2024, 2024, : 88 - 94
  • [12] High-Fidelity ECMO Simulation Scenarios
    Puslecki, Mateusz
    Ligowski, Marcin
    Dabrowski, Marek
    Stefaniak, Sebastian
    Gasiorowski, Lukasz
    Dabrowska, Agata
    Klosiewicz, Tomasz
    Sip, Maciej
    Zielinski, Marcin
    Pawlak, Aleksander
    Sobczynski, Pawel
    Lukasik-Glebocka, Magdalena
    Karczewski, Marek
    Malkiewicz, Tomasz
    Artynska, Aniela
    Gezela, Mariusz
    Perek, Bartlomiej
    Ladzinska, Malgorzata
    Kiel, Michal
    Misterski, Marcin
    Buczkowski, Piotr
    Telec, Wojciech
    Czekajlo, Michael
    Jemielity, Marek
    EUROPEAN JOURNAL OF HEART FAILURE, 2017, 19 : 61 - 61
  • [13] Summative High-Fidelity Nursing Simulation
    Brito, Fernanda Andrade
    NURSING RESEARCH, 2017, 66 (02) : E44 - E44
  • [14] High-fidelity simulation in neonatal resuscitation
    Campbell, Douglas M.
    Barozzino, Tony
    Farrugia, Michael
    Sgro, Michael
    PAEDIATRICS & CHILD HEALTH, 2009, 14 (01) : 19 - 23
  • [15] Patterns of Communication in High-Fidelity Simulation
    Anderson, Judy K.
    Nelson, Kimberly
    JOURNAL OF NURSING EDUCATION, 2015, 54 (01) : 22 - 27
  • [16] Debriefing values in high-fidelity simulation
    Blanie, Antonia
    Le Guen, Morgan
    ANAESTHESIA CRITICAL CARE & PAIN MEDICINE, 2017, 36 (04) : 201 - 202
  • [17] Enhancing Safety with High-Fidelity Simulation
    Hughes, William
    Chemical Processing, 2023, 85 (05): : 24 - 26
  • [18] High-Fidelity Simulation and Emergency Preparedness
    Morrison, Agnes Marie
    Catanzaro, Ana Maria
    PUBLIC HEALTH NURSING, 2010, 27 (02) : 164 - 173
  • [19] The theatre of high-fidelity simulation education
    Roberts, Debbie
    Greene, Leah
    NURSE EDUCATION TODAY, 2011, 31 (07) : 694 - 698
  • [20] Autonomous vehicle safety evaluation through a high-fidelity simulation approach
    Malayjerdi, Mohsen
    Baykara, Cem
    Sell, Raivo
    Malayjerdi, Ehsan
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2021, 70 (04) : 413 - 421