Thermal Interface Resistance Measurements for GaN-on-Diamond Composite Substrates

被引:0
|
作者
Cho, Jungwan [1 ]
Won, Yoonjin [1 ]
Francis, Daniel [2 ]
Asheghi, Mehdi [1 ]
Goodson, Kenneth E. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Element Six Technol, Santa Clara, CA 95054 USA
关键词
High-Electron-Mobility Transistors (HEMT); Gallium Nitride (GaN); Diamond; Thermal Boundary Resistance (TBR); Thermal Interface Resistance; Thermal Conductivity; Time-Domain Thermoreflectance (TDTR); Electronics Cooling; ALGAN/GAN HEMTS; HEAT; DENSITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The performance of high-power gallium nitride (GaN) high-electron-mobility transistors (HEMTs) is limited by self-heating effects. High thermal resistances within micrometers of the active device junction often dominate the junction temperature rise and fundamentally limit the device power handling capability. The use of high-thermal-conductivity diamond in close proximity to the transistor junction can mitigate this thermal constraint, but careful attention is required to the quality of the thermal interface between the GaN and diamond. Here we apply time-domain thermoreflectance (TDTR) to two GaN-on-diamond composite substrates with varying GaN thicknesses to measure the thermal interface resistance between the GaN and diamond (29 m(2) K GW(-1)) as well as the thermal conductivity of the GaN buffer layer (112 W m(-1) K-1) at room temperature. Informed by these data, we perform finite-element analysis to quantify the relative impact of the GaN-diamond thermal interface resistance, diamond substrate thermal conductivity, and a convective cooling solution on the device channel temperature rise.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] GaN-on-Diamond: A Brief History
    Ejeckam, Felix
    Francis, Daniel
    Faili, Firooz
    Twitchen, Daniel
    Bolliger, Bruce
    Babic, Dubravko
    Felbinger, Jonathan
    2014 LESTER EASTMAN CONFERENCE ON HIGH PERFORMANCE DEVICES (LEC), 2014,
  • [22] FEM thermal and stress analysis of bonded GaN-on-diamond substrate
    Zhai, Wenbo
    Zhang, Jingwen
    Chen, Xudong
    Bu, Renan
    Wang, Hongxing
    Hou, Xun
    AIP ADVANCES, 2017, 7 (09):
  • [23] Thermal characteristics of GaN-on-diamond HEMTs: Impact of anisotropic and inhomogeneous thermal conductivity of polycrystalline diamond
    Zou, Bo
    Sun, Huarui
    Guo, Huaixin
    Dai, Bing
    Zhu, Jiaqi
    DIAMOND AND RELATED MATERIALS, 2019, 95 : 28 - 35
  • [24] Interface Engineering Enabling Next Generation GaN-on-Diamond Power Devices
    Gu, Yimin
    Zhang, Yun
    Hua, Bin
    Ni, Xianfeng
    Fan, Qian
    Gu, Xing
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (08) : 4239 - 4249
  • [25] FEM thermal analysis of high power GaN-on-diamond HEMTs
    Xudong Chen
    Wenbo Zhai
    Jingwen Zhang
    Renan Bu
    Hongxing Wang
    Xun Hou
    Journal of Semiconductors, 2018, 39 (10) : 50 - 56
  • [26] FEM thermal analysis of high power GaN-on-diamond HEMTs
    Chen, Xudong
    Zhai, Wenbo
    Zhang, Jingwen
    Bu, Renan
    Wang, Hongxing
    Hou, Xun
    JOURNAL OF SEMICONDUCTORS, 2018, 39 (10)
  • [27] Effect of GaN-on-diamond integration technology on its thermal properties
    Li, Yao
    Zheng, Zixuan
    Zhang, Chao
    Pu, Hongbin
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (10)
  • [28] Interface Engineering Enabling Next Generation GaN-on-Diamond Power Devices
    Yimin Gu
    Yun Zhang
    Bin Hua
    Xianfeng Ni
    Qian Fan
    Xing Gu
    Journal of Electronic Materials, 2021, 50 : 4239 - 4249
  • [29] Thermal Performance Improvement of GaN-on-Diamond High Electron Mobility Transistors
    Tadjer, Marko J.
    Anderson, Travis J.
    Gallagher, James C.
    Raad, Peter E.
    Komarov, Pavel
    Koehler, Andrew D.
    Hobart, Karl D.
    Kub, Fritz J.
    2018 76TH DEVICE RESEARCH CONFERENCE (DRC), 2018,
  • [30] Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices
    Cheng, Zhe
    Mu, Fengwen
    Yates, Luke
    Suga, Tadatomo
    Graham, Samuel
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) : 8376 - 8384