Solutions of the congruence 1+2f (n) + . . . + nf (n) ≡ 0 (mod n)

被引:4
|
作者
Maria Grau, Jose [1 ]
Moree, Pieter [2 ]
Oller-Marcen, Antonio M. [3 ]
机构
[1] Univ Oviedo, Dept Matemat, Avda Calvo Sotelo S-N, Oviedo 33007, Spain
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[3] Ctr Univ Def Zaragoza, Ctra Huesca S-N, Zaragoza 50090, Spain
关键词
Power sums; congruence; divisibility; asymptotic density; Giuga numbers;
D O I
10.1002/mana.201500057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we characterize, in terms of the prime divisors of n, the pairs (k, n) for which n divides Sigma(n)(j=1) j(k). As an application, we derive some results on the sets M-f := {n >= 1 : f (n) > 1 and Sigma(n)(j=1) j(f (n)) equivalent to 0 (mod n)} for some choices of f. C (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:820 / 830
页数:11
相关论文
共 50 条
  • [41] an+1=p(n)a_n2+f(n)a_n+r(p(n)≠0)型数列的求解方法
    戈永石
    中学数学, 2003, (03) : 30 - 31
  • [42] 有向图n·5(n≡0(mod2)的优美性
    张景晓
    韩忠月
    董立华
    刘德金
    德州学院学报(自然科学版), 2002, (04) : 7 - 9
  • [43] Density of sequences of the form xn = f(n)n in [0,1]
    Saunders, J. C.
    ACTA ARITHMETICA, 2021, 201 (02) : 165 - 176
  • [44] On multiple precision based Montgomery Multiplication without Precomputation of N0′ = -N0-1 mod W
    Ploog, H
    Timmermann, D
    2000 IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN: VLSI IN COMPUTERS & PROCESSORS, PROCEEDINGS, 2000, : 589 - 590
  • [45] A congruence for 2''L(n)
    Minh, CA
    FIBONACCI QUARTERLY, 1996, 34 (04): : 378 - 378
  • [46] SMALL SOLUTIONS OF CONGRUENCE - A1XL1/1+A2XL2/2+A0=0 (MOD P)
    WILLIAMS, KS
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (NOV): : 409 - &
  • [47] On the number of solutions of the equation Rx2 + Sy2 = 1 (mod N)
    Rana Barua
    Mahabir P. Jhanwar
    Sankhya A, 2010, 72 (1): : 226 - 236
  • [48] On semiregular digraphs of the congruence x(k) & Unknown; y (mod n)
    Somer, Lawrence
    Krizek, Michal
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2007, 48 (01): : 41 - 58
  • [49] The congruence xn =- a n ( mod m ) : Solvability and related OEIS sequences
    Merikoski, Jorma K.
    Haukkanen, Pentti
    Tossavainen, Timo
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (03) : 516 - 529
  • [50] Solving x2k+1+x+a=0 in F2n with gcd⁡(n,k)=1
    Mesnager, Sihem (smesnager@univ-paris8.fr), 1600, Academic Press Inc. (63):