Simulations of Electrical Discharges in Air Using Stabilized Drift-Diffusion Model

被引:12
|
作者
Singh, Shailendra [1 ]
Serdyuk, Yuriy V. [2 ]
Gubanski, Stanislaw M. [2 ]
机构
[1] ABB AS, EPMV, Scandinavia Technol Ctr, N-3716 Skien, Norway
[2] Chalmers Univ Technol, Dept Elect Power Engn, S-41296 Gothenburg, Sweden
关键词
Drift-diffusion model; electric field; gas discharge; space charge; streamer propagation; STREAMER PROPAGATION; POSITIVE STREAMERS; GAS-DISCHARGES; FIELD; WEAK;
D O I
10.1109/TPS.2018.2850803
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The implementation of a drift-diffusion model of discharges in air utilizing stabilized logarithmic finite-element formulation of governing equations is presented. The performance of the proposed method is examined in a number of numerical tests. The developed approach is verified by conducting simulations of a positive streamer in air in a needle-plane electrode system, and the results are compared with those available in the literature. Furthermore, the simulations of a nonaxially propagating double-headed discharge developing between edges of flat disk electrodes are presented and discussed.
引用
收藏
页码:3031 / 3039
页数:9
相关论文
共 50 条
  • [21] Quantum drift-diffusion model for IMPATT devices
    Aritra Acharyya
    Subhashri Chatterjee
    Jayabrata Goswami
    Suranjana Banerjee
    J. P. Banerjee
    Journal of Computational Electronics, 2014, 13 : 739 - 752
  • [22] Quantum drift-diffusion model for IMPATT devices
    Acharyya, Aritra
    Chatterjee, Subhashri
    Goswami, Jayabrata
    Banerjee, Suranjana
    Banerjee, J. P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) : 739 - 752
  • [23] The semiclassical limit in the quantum drift-diffusion model
    Qiang Chang Ju
    Acta Mathematica Sinica, English Series, 2009, 25 : 253 - 264
  • [24] The Dirichlet problem of the quantum drift-diffusion model
    Chen, Xiuqing
    Chen, Li
    Jian, Huaiyu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (09) : 3084 - 3092
  • [25] The Multidimensional Bipolar Quantum Drift-diffusion Model
    Chen, Xiuqing
    Guo, Yingchun
    ADVANCED NONLINEAR STUDIES, 2008, 8 (04) : 799 - 816
  • [26] The semiclassical limit in the quantum drift-diffusion model
    Ju, Qiang Chang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (02) : 253 - 264
  • [27] Improvement on drift-diffusion model for photovoltaic detectors
    Department of Physics and Mathematics, Qingdao University of Science and Technology, Qingdao 266042, China
    不详
    Bandaoti Guangdian, 2006, 4 (399-401):
  • [28] A universal drift-diffusion simulator and its application to OLED simulations
    Santoni, Francesco
    Brown, Thomas
    Brunetti, Francesca
    Pescetelli, Sara
    Reale, Andrea
    Di Carlo, Aldo
    Maur, Matthias Auf Der
    17TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES NUSOD 2017, 2017, : 103 - 104
  • [29] The Semiclassical Limit in the Quantum Drift-Diffusion Model
    Qiang Chang JUInstitute of Applied Physics and Computational Mathematics
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (02) : 253 - 264
  • [30] Numerical approximation of a quantum drift-diffusion model
    Gallego, S
    Méhats, F
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 519 - 524