An improved k-ω turbulence model for the simulations of the wind turbine wakes in a neutral atmospheric boundary layer flow

被引:19
|
作者
Bouras, Ioannis [1 ]
Ma, Lin [1 ]
Ingham, Derek [1 ]
Pourkashanian, Mohamed [1 ]
机构
[1] Univ Sheffield, Fac Engn, Energy 2050, Sheffield S10 2TN, S Yorkshire, England
关键词
LARGE-EDDY SIMULATION; EPSILON MODEL; CFD; TERRAIN;
D O I
10.1016/j.jweia.2018.06.013
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Correct prediction of the recovery of wind turbine wakes in terms of the wind velocity and turbulence downstream of the turbine is of paramount importance for the accurate simulations of turbine interactions, overall wind farm energy output and the impact to the facilities downstream of the wind farm. Conventional turbulence models often result in an unrealistic recovery of the wind velocity and turbulence downstream of the turbine. In this paper, a modified k - omega turbulence model has been proposed together with conditions for achieving a zero streamwise gradient for all the fluid flow variables in neutral atmospheric flows. The new model has been implemented in the simulation of the wakes of two different wind turbines and the commonly used actuator disk model has been employed to represent the turbine rotors. The model has been tested for different wind speeds and turbulence levels. The comparison of the computational results shows good agreement with the available experimental data, in both near and far wake regions for all the modeled wind turbines. A zero streamwise gradient has been maintained in the far wake region in terms of both wind speed and turbulence quantities.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 50 条
  • [21] UNDERSTANDING THE INFLUENCE OF TURBINE GEOMETRY AND ATMOSPHERIC TURBULENCE ON WIND TURBINE WAKES
    Gu, Ping
    Kuo, Jim Y. J.
    Romero, David A.
    Amon, Cristina H.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 6B, 2017,
  • [22] A k-*epsiv Turbulence Closure Model For The Atmospheric Boundary Layer Including Urban Canopy
    Vu Thanh Ca
    Yasunobu Ashie
    Takashi Asaeda
    Boundary-Layer Meteorology, 2002, 102 : 459 - 490
  • [23] Wind Tunnel Simulation of Wind Turbine Wakes in Neutral, Stable and Unstable Offshore Atmospheric Boundary Layers
    Hancock, Philip E.
    Pascheke, Frauke
    Zhang, Shanying
    WIND ENERGY - IMPACT OF TURBULENCE, 2014, 2 : 109 - 114
  • [24] Realistic boundary conditions for the simulation of atmospheric boundary layer flows using an improved k-ε model
    Balogh, M.
    Parente, A.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2015, 144 : 183 - 190
  • [25] Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model
    Yang, Yi
    Xie, Zhuangning
    Gu, Ming
    WIND AND STRUCTURES, 2017, 24 (05) : 465 - 480
  • [26] A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects
    Leonardo P. Chamorro
    Fernando Porté-Agel
    Boundary-Layer Meteorology, 2009, 132 : 129 - 149
  • [27] A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects
    Chamorro, Leonardo P.
    Porte-Agel, Fernando
    BOUNDARY-LAYER METEOROLOGY, 2009, 132 (01) : 129 - 149
  • [28] On the interaction of a wind turbine wake with a conventionally neutral atmospheric boundary layer
    Hodgkin, Amy
    Deskos, Georgios
    Laizet, Sylvain
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2023, 102
  • [29] Modeling of wind turbine wakes under thermally-stratified atmospheric boundary layer
    El-Askary, W. A.
    Sakr, I. M.
    AbdelSalam, Ali M.
    Abuhegazy, M. R.
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2017, 160 : 1 - 15
  • [30] A simple steady-state inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
    van der Laan, Maarten Paul
    Kelly, Mark
    Baungaard, Mads
    Dicholkar, Antariksh
    Hodgson, Emily Louise
    WIND ENERGY SCIENCE, 2024, 9 (10) : 1985 - 2000