An improved k-ω turbulence model for the simulations of the wind turbine wakes in a neutral atmospheric boundary layer flow

被引:19
|
作者
Bouras, Ioannis [1 ]
Ma, Lin [1 ]
Ingham, Derek [1 ]
Pourkashanian, Mohamed [1 ]
机构
[1] Univ Sheffield, Fac Engn, Energy 2050, Sheffield S10 2TN, S Yorkshire, England
关键词
LARGE-EDDY SIMULATION; EPSILON MODEL; CFD; TERRAIN;
D O I
10.1016/j.jweia.2018.06.013
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Correct prediction of the recovery of wind turbine wakes in terms of the wind velocity and turbulence downstream of the turbine is of paramount importance for the accurate simulations of turbine interactions, overall wind farm energy output and the impact to the facilities downstream of the wind farm. Conventional turbulence models often result in an unrealistic recovery of the wind velocity and turbulence downstream of the turbine. In this paper, a modified k - omega turbulence model has been proposed together with conditions for achieving a zero streamwise gradient for all the fluid flow variables in neutral atmospheric flows. The new model has been implemented in the simulation of the wakes of two different wind turbines and the commonly used actuator disk model has been employed to represent the turbine rotors. The model has been tested for different wind speeds and turbulence levels. The comparison of the computational results shows good agreement with the available experimental data, in both near and far wake regions for all the modeled wind turbines. A zero streamwise gradient has been maintained in the far wake region in terms of both wind speed and turbulence quantities.
引用
收藏
页码:358 / 368
页数:11
相关论文
共 50 条
  • [1] Response to the discussion on "An improved k - ω turbulence model for the simulations of the wind turbine wakes in a neutral atmospheric boundary layer flow" by Y Yang
    Bouras, Ioannis
    Ma, Lin
    Ingham, Derek
    Pourkashanian, Mohamed
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2019, 184 : 456 - 457
  • [2] Discussion of "An improved k - ω turbulence model for the simulations of the wind turbine wakes in a neutral atmospheric boundary layer flow" by Ioannis Bouras, Lin Ma, Derek Ingham & Mohamed Pourkashanian
    Yang, Yi
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2019, 184 : 458 - 459
  • [3] A modified k-ω turbulence model for improved predictions of neutral atmospheric boundary layer flows
    Saleh, A.
    Lakkis, I.
    Moukalled, F.
    BUILDING AND ENVIRONMENT, 2022, 223
  • [4] An improved k-ε model applied to a wind turbine wake in atmospheric turbulence
    van der Laan, M. Paul
    Sorensen, Niels N.
    Rethore, Pierre-Elouan
    Mann, Jakob
    Kelly, Mark C.
    Troldborg, Niels
    Schepers, J. Gerard
    Machefaux, Ewan
    WIND ENERGY, 2015, 18 (05) : 889 - 907
  • [5] A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes
    Troldborg, Niels
    Sorensen, Jens N.
    Mikkelsen, Robert
    Sorensen, Niels N.
    WIND ENERGY, 2014, 17 (04) : 657 - 669
  • [6] A comparative study on the simulation of neutral atmospheric boundary layer based on the k-εturbulence model
    Luo K.-W.
    Yang Y.
    Xie Z.-N.
    Yang, Yi (ctyangyi@scut.edu.cn), 2018, Tsinghua University (35): : 21 - 29
  • [7] Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model
    Hu, Peng
    Li, Yongle
    Cai, C. S.
    Liao, Haili
    Xu, G. J.
    WIND AND STRUCTURES, 2013, 17 (01) : 87 - 105
  • [8] Developing modified k-ε turbulence models for neutral atmospheric boundary layer flow simulation using OpenFOAM
    Wang, Yuanbo
    Li, Jiqin
    Liu, Wei
    Dong, Jiankai
    Liu, Jing
    BUILDING SIMULATION, 2024, 17 (12) : 2281 - 2295
  • [9] Instability of wind turbine wakes immersed in the atmospheric boundary layer
    Viola, Francesco
    Iungo, Giacomo Valerio
    Camarri, Simone
    Porte-Agel, Fernando
    Gallaire, Francois
    WAKE CONFERENCE 2015, 2015, 625
  • [10] Synthetic atmospheric turbulence and wind shear in large eddy simulations of wind turbine wakes
    Keck, Rolf-Erik
    Mikkelsen, Robert
    Troldborg, Niels
    de Mare, Martin
    Hansen, Kurt S.
    WIND ENERGY, 2014, 17 (08) : 1247 - 1267