Classification of the Lie bialgebra structures on the Witt and Virasoro algebras

被引:74
|
作者
Ng, SH
Taft, EJ [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
D O I
10.1016/S0022-4049(99)00045-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that all the Lie bialgebra structures on the one sided Witt algebra W-1, on the Witt algebra W and on the Virasoro algebra V are triangular coboundary Lie bialgebra structures associated to skew-symmetric solutions r of the classical Yang-Baxter equation of the form r = a boolean AND b, In particular, for the one-sided Witt algebra W-1 = Der k[t] over an algebraically closed field k of characteristic zero, the Lie bialgebra structures discovered in Michaelis (Adv. Math. 107 (1994) 365-392) and Taft (J. Pure Appl. Algebra 87 (1993) 301-312) are all the Lie bialgebra structures on W-1 up to isomorphism. We prove the analogous result for a class of Lie subalgebras of W which includes W-1. (C) 2000 Elsevier Science B.V. All rights reserved. MSC: 17B37; 17B68.
引用
收藏
页码:67 / 88
页数:22
相关论文
共 50 条
  • [21] Dual Lie bialgebra structures of the twisted Heisenberg-Virasoro type
    Song, Guang'ai
    Su, Yucai
    Yue, Xiaoqing
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (02)
  • [22] Lie super-bialgebra structures on super-Virasoro algebra
    Hengyun Yang
    Frontiers of Mathematics in China, 2009, 4 : 365 - 379
  • [23] On some lie bialgebra structures on polynomial algebras and their quantization
    Khoroshkin, S. M.
    Pop, I. I.
    Samsonov, M. E.
    Stolin, A. A.
    Tolstoy, V. N.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (03) : 625 - 662
  • [24] Lie super-bialgebra structures on super-Virasoro algebra
    Yang, Hengyun
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (02) : 365 - 379
  • [25] On Some Lie Bialgebra Structures on Polynomial Algebras and their Quantization
    S. M. Khoroshkin
    I. I. Pop
    M. E. Samsonov
    A. A. Stolin
    V. N. Tolstoy
    Communications in Mathematical Physics, 2008, 282 : 625 - 662
  • [26] Some remarks on Lie bialgebra structures on simple complex Lie algebras
    Stolin, A
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) : 4289 - 4302
  • [27] Poisson algebras and symmetric Leibniz bialgebra structures on oscillator Lie algebras
    Albuquerque, H.
    Barreiro, E.
    Benayadi, S.
    Boucetta, M.
    Sanchez, J. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [28] Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras
    Ammar, F.
    Makhlouf, A.
    Silvestrov, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (26)
  • [29] ON THE GENERAL CLASSIFICATION OF LIE BIALGEBRA STRUCTURES OVER POLYNOMIALS
    Pop, Iulia
    Yermolova-Magnusson, Julia
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (12) : 4461 - 4470
  • [30] Lie-admissible structures on Witt type algebras
    Benayadi, Said
    Chopp, Mikael
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) : 541 - 559