OPTIMIZATION OF NANOFLUID-COOLED MICROCHANNEL HEAT SINK

被引:17
|
作者
Adham, Ahmed Mohammed [1 ]
Mohd-Ghazali, Normah [2 ]
Ahmad, Robiah [3 ]
机构
[1] Erbil Polytech Univ, Erbil Tech Engn Coll, Refrigerat & Air Conditioning Engn Tech, Erbil, Iraqi Kurdistan, Iraq
[2] Univ Technol Malaysia, Fac Mech Engn, Skudai, Johor Barhru, Malaysia
[3] Univ Technol Skudai, UTM Razak Sch Engn & Adv Technol, Malaysia Int Campus, Kuala Lumpur, Malaysia
来源
THERMAL SCIENCE | 2016年 / 20卷 / 01期
关键词
microchannel; nanofluid; optimization; non-dominated sorting genetic algorithm; PERFORMANCE;
D O I
10.2298/TSCI130517163A
中图分类号
O414.1 [热力学];
学科分类号
摘要
The optimization of a nanofluid-cooled rectangular microchannel heat sink is reported. Two nanofluids with volume fraction of 1%, 3%, 5%, 7%, and 9% are employed to enhance the overall performance of the system. An optimization scheme is applied consisting of a systematic thermal resistance model as an analysis method and the elitist non-dominated sorting genetic algorithm. The optimized results showed that the increase in the particles volume fraction results in a decrease in the total thermal resistance and an increase in the pumping power. For volume fractions of 1%, 3%, 5%, 7%, and 9%, the thermal resistances were 0.072, 0.07151, 0.07075, 0.07024, and 0.070 K/Wfor the SiC-H2O while, they were 0.0705, 0.0697, 0.0694, 0.0692, and 0.069 K/W for the TiO2-H2O. The associated pumping power were 0.633, 0.638, 0.704, 0.757, and 0.807 W for the SiC-H2O while they were 0.645, 0.675, 0.724, 0.755, and 0.798 W for the TiO2-H2O. In addition, for the same operating conditions, the nanofluid-cooled system outperformed the water-cooled system in terms of the total thermal resistance (0.069 and 0.11 for nanofluid-cooled, and water-cooled systems, respectively). Based on the results observed in this study, nanofluids should be considered as the future coolant for electronic devices cooling systems.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
  • [31] Design and Optimization of Single-Phase Liquid Cooled Microchannel Heat Sink
    Biswal, Laxmidhar
    Chakraborty, Suman
    Som, S. K.
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2009, 32 (04): : 876 - 886
  • [32] Heat transfer analysis of nanofluid based microchannel heat sink
    Zargartalebi, Mohammad
    Azaiez, Jalel
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 1233 - 1242
  • [33] Effectiveness of nanofluid on improving the performance of microchannel heat sink
    Wu, Junmei
    Zhao, Jiyun
    Lei, Jiang
    Liu, Bo
    APPLIED THERMAL ENGINEERING, 2016, 101 : 402 - 412
  • [34] Thermal performance and friction factor of a cylindrical microchannel heat sink cooled by Cu-water nanofluid
    Azizi, Zoha
    Alamdari, A.
    Malayeri, M. R.
    APPLIED THERMAL ENGINEERING, 2016, 99 : 970 - 978
  • [35] On the assessment of the thermal performance of microchannel heat sink with nanofluid
    Ho, C. J.
    Peng, Jian-Kai
    Yang, Tien-Fu
    Rashidi, Saman
    Yan, Wei-Mon
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 201
  • [36] Entropy generation of nanofluid flow in a microchannel heat sink
    Manay, Eyuphan
    Akyurek, Eda Feyza
    Sahin, Bayram
    RESULTS IN PHYSICS, 2018, 9 : 615 - 624
  • [37] Optimization of Square and Circular Ammonia-cooled. Microchannel Heat Sink with Genetic Algorithm
    Mohd-Ghazali, Normah
    Jong-Taek, Oh
    Nguyen Ba Chien
    Kwang-Il, Choi
    Zolpakar, Nor Atiqah
    Ahmad, Robiah
    INTERNATIONAL CONFERENCE ON APPLIED ENERGY, ICAE2014, 2014, 61 : 55 - 58
  • [38] Eulerian-Lagrangian numerical investigation of the fluid flow properties and heat transfer of a nanofluid-cooled micro pin-fin heat sink
    Ali, Naim Ben
    Basem, Ali
    Ghodratallah, Pooya
    Singh, Pradeep Kumar
    Musa, Veyan A.
    Jasim, Dheyaa J.
    Ali, Rifaqat
    Rajab, Husam
    Ahmed, Mohsen
    Alizad, A.A.
    Journal of the Taiwan Institute of Chemical Engineers, 2024, 164
  • [39] NUMERICAL MODELLING OF NANOFLUID HEAT TRANSFER INSIDE A MICROCHANNEL HEAT SINK
    Rimbault, Benjamin
    Cong Tam Nguyen
    Galanis, Nicolas
    PROCEEDINGS OF THE ASME 10TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2012, 2012, : 123 - +
  • [40] Numerical analysis of the heat transfer and fluid flow characteristics of a nanofluid-cooled micropin-fin heat sink using the Eulerian-Lagrangian approach
    Ambreen, Tehmina
    Saleem, ArsIan
    Park, Cheol Woo
    POWDER TECHNOLOGY, 2019, 345 : 509 - 520