Ursolic Acid Ameliorates the Injury of H9c2 Cells Caused by Hypoxia and Reoxygenation Through Mediating CXCL2/NF-κB Pathway

被引:4
|
作者
Bian, Zhongrui [1 ]
Xu, Fei [1 ]
Liu, Hui [1 ]
Du, Yimeng [1 ]
机构
[1] Shandong Univ, Dept Cardiol, Hosp 2, 247 Beiyuan St, Jinan 250033, Shandong, Peoples R China
关键词
HY-18739; Inflammation; Oxidative stress; siRNA; NF-KAPPA-B; ISCHEMIA-REPERFUSION; OXIDATIVE STRESS; PROTECTS; INFLAMMATION; ACTIVATION; EXPRESSION; CHEMOKINES; CXCL2;
D O I
10.1536/ihj.21-807
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Ursolic acid (UA) has been reported to possess several biological benefits, such as anti-cancer, anti-inflammation, antibacterial, and neuroprotective functions. This study detects the function and molecular mecha-nism of UA in H9c2 cells under hypoxia and reoxygenation (H/R) conditions. Under H/R stimulation, the effects of UA on H9c2 cells were examined using ELISA and western blot assays. The Comparative Toxicogenomics Database was employed to analyze the target molecule of UA. Small interfering RNA was used to knock down CXCL2 expression, further exploring the function of CXCL2 in H/R-induced H9c2 cells. The genes related to the nuclear factor-kappa B (NF--KB) pathway were assessed using western blot analysis. Significant effects of UA on H/R-induced H9c2 cell damage were observed, accompanied by reduced inflammation and oxidative stress injury. Additionally, the increased level of CXCL2 in H/R-induced H9c2 cells was reduced after UA stimulation. Moreover, CXCL2 knockdown strengthened the beneficial effect of UA on H/R-induced H9c2 cells. HY-18739, an activator of the NF-kappa B pathway, can increase CXCL2 expression. Moreover, the increased levels of p-P65 NF-kappa B and p-I-KB alpha in H/R-induced H9c2 cells were remarkably attenuated by UA treatment. In summary, the results indicated that UA may alleviate the damage of H9c2 cells by targeting the CXCL2/NF-kappa B pathway under H/R conditions.
引用
收藏
页码:755 / 762
页数:8
相关论文
共 50 条
  • [31] Shikonin protects H9C2 cardiomyocytes against hypoxia/reoxygenation injury through activation of PI3K/Akt signaling pathway
    Wang, Shuang
    Zhu, Yanfang
    Qiu, Ruixia
    BIOMEDICINE & PHARMACOTHERAPY, 2018, 104 : 712 - 717
  • [32] Myosin 1b Participated in the Modulation of Hypoxia/Reoxygenation-Caused H9c2 Cell Apoptosis and Autophagy
    Xu, Jing
    Huang, Jin
    He, Xiaojie
    Hu, Mingshuang
    Su, Shan
    Liu, Ping
    ANALYTICAL CELLULAR PATHOLOGY, 2022, 2022
  • [33] Nobiletin suppresses oxidative stress and apoptosis in H9c2 cardiomyocytes following hypoxia/reoxygenation injury
    Liu, Feng
    Zhang, Han
    Li, Yanming
    Lu, Xueli
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2019, 854 : 48 - 53
  • [34] Liquiritin inhibits H2O2-induced oxidative stress injury in H9c2 cells via the AMPK/SIRT1/NF-κB signaling pathway
    Tang, Tong-Juan
    Wang, Xiang
    Wang, Liang
    Chen, Ming
    Cheng, Jing
    Zuo, Meng-Yu
    Gu, Jin-Fan
    Ding, Rui
    Zhou, Peng
    Huang, Jin-Ling
    JOURNAL OF FOOD BIOCHEMISTRY, 2022, 46 (10)
  • [35] Wenxin Granule Ameliorates Hypoxia/Reoxygenation-Induced Oxidative Stress in Mitochondria via the PKC-δ/NOX2/ROS Pathway in H9c2 Cells
    Jin, Qihui
    Jiang, Yanhong
    Fu, Lizhong
    Zheng, Yanqiu
    Ding, Yuxia
    Liu, Qian
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020, 2020
  • [36] Role of endoplasmic reticulum oxidase 1α in H9C2 cardiomyocytes following hypoxia/reoxygenation injury
    Lai, Lina
    Liu, Yue
    Liu, Yuanyuan
    Zhang, Ni
    Cao, Shilu
    Zhang, Xiaojing
    Wu, Di
    MOLECULAR MEDICINE REPORTS, 2020, 22 (02) : 1420 - 1428
  • [37] Dexmedetomidine Attenuates Hypoxia/Reoxygenation Injury of H9C2 Myocardial Cells by Upregulating miR-146a Expression via the MAPK Signal Pathway
    Chu, Yi
    Teng, Jiwei
    Feng, Pin
    Liu, Hui
    Wang, Fangfang
    Wang, Haiyan
    PHARMACOLOGY, 2022, 107 (1-2) : 14 - 27
  • [38] Protective effects of carnosic acid against mitochondria-mediated injury in H9c2 cardiomyocytes induced by hypoxia/reoxygenation
    Liu, Ping
    Dong, Jing
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2017, 14 (06) : 5629 - 5634
  • [39] Ambra1 Alleviates Hypoxia/Reoxygenation Injury in H9C2 Cells by Regulating Autophagy and Reactive Oxygen Species
    Zhao, Lin
    Cheng, Liting
    Wu, Yongquan
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020
  • [40] Eupatilin inhibits the apoptosis in H9c2 cardiomyocytes via the Akt/GSK-3β pathway following hypoxia/reoxygenation injury
    Qiao, Zengyong
    Xu, Ya-wei
    Yang, Jingyu
    BIOMEDICINE & PHARMACOTHERAPY, 2016, 82 : 373 - 378