High energy electron beams from a laser wakefield acceleration with a long gas jet

被引:5
|
作者
Kim, Jaehoon [1 ]
Hwangbo, Yong Hun [1 ]
Lee, Shin-Yeong [2 ]
机构
[1] Korea Electrotechnol Res Inst, Ctr EM Waves, Ansan 15588, South Korea
[2] Univ Sci & Technol, Accelerator & Nucl Fus Phys Engn, Daejeon 34113, South Korea
关键词
Laser wakefield acceleration; Gas jet; Plasma channel; Laser plasma; Laser application; Interferometry; Plasma density;
D O I
10.3938/jkps.71.256
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A long gas jet was used as a gas target for laser wake field acceleration to increase the energy and quality of the electron beam. When the plasma density was 7 x 10(18) cm(-3), quasi monoenergetic electron beams with a maximum energy of 152 MeV, a beam divergence 3 mrad, and a pointing stability 4 mrad were generated with a 5 mm long gas jet. The maximum energy was close to the theoretical limit predicted from the bubble model. This means that the length of the plasma was sufficiently long to accelerate the electron to the dephasing length after the electrons were self-injected by self-focusing. As the plasma density increased, the dephasing length decreased and the electron energy decreased. The continuous injection with higher density plasmas generated highly diverging beams. As the laser power increased, a number of electron beams with different propagation directions were generated. As shown by the measured shadowgram, the laser was divided into several filaments and each filament accelerated electron beam having different directions. The electron beam generated at this time decreased as the laser energy decreased due the division of the laser into different directions.
引用
收藏
页码:256 / 263
页数:8
相关论文
共 50 条
  • [41] Laser wakefield acceleration of electron beams beyond 1 GeV from an ablative capillary discharge waveguide
    Lu, Haiyang
    Liu, Mingwei
    Wang, Wentao
    Wang, Cheng
    Liu, Jiansheng
    Deng, Aihua
    Xu, Jiancai
    Xia, Changquan
    Li, Wentao
    Zhang, Hui
    Lu, Xiaoming
    Wang, Cheng
    Wang, Jianzhou
    Liang, Xiaoyan
    Leng, Yuxin
    Shen, Baifei
    Nakajima, Kazuhisa
    Li, Ruxin
    Xu, Zhizhan
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (09)
  • [42] Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration
    Sharma, Vivek
    Kumar, Sandeep
    Kant, Niti
    Thakur, Vishal
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2024, 79 (03): : 199 - 205
  • [43] Parametric study of high-energy ring-shaped electron beams from a laser wakefield accelerator
    Maitrallain, A.
    Brunetti, E.
    Streeter, M. J., V
    Kettle, B.
    Spesyvtsev, R.
    Vieux, G.
    Shahzad, M.
    Ersfeld, B.
    Yoffe, S. R.
    Kornaszewski, A.
    Finlay, O.
    Ma, Y.
    Albert, F.
    Bourgeois, N.
    Dann, S. J. D.
    Lemos, N.
    Cipiccia, S.
    Cole, J. M.
    Gonzalez, I. G.
    Willingale, L.
    Higginbotham, A.
    Hussein, A. E.
    Smid, M.
    Falk, K.
    Krushelnick, K.
    Lopes, N. C.
    Gerstmayr, E.
    Lumsdon, C.
    Lundh, O.
    Mangles, S. P. D.
    Najmudin, Z.
    Rajeev, P. P.
    Symes, D. R.
    Thomas, A. G. R.
    Jaroszynski, D. A.
    [J]. NEW JOURNAL OF PHYSICS, 2022, 24 (01):
  • [44] Laser Seeded Electron Beam Filamentation in High Intensity Laser Wakefield Acceleration
    Vargas, M.
    Schumaker, W.
    Cummings, P.
    Chvykov, V.
    Yanovsky, V.
    Maksimchuk, A.
    Krushelnick, K.
    Thomas, A. G. R.
    [J]. ADVANCED ACCELERATOR CONCEPTS, 2012, 1507 : 336 - 340
  • [45] High-Density Dynamics of Laser Wakefield Acceleration from Gas Plasmas to Nanotubes
    Nicks, Bradley Scott
    Barraza-Valdez, Ernesto
    Hakimi, Sahel
    Chesnut, Kyle
    DeGrandchamp, Genevieve
    Gage, Kenneth
    Housley, David
    Huxtable, Gregory
    Lawler, Gerard
    Lin, Daniel
    Manwani, Pratik
    Nelson, Eric
    Player, Gabriel
    Seggebruch, Michael
    Sweeney, James
    Tanner, Joshua
    Thompson, Kurt
    Tajima, Toshiki
    [J]. PHOTONICS, 2021, 8 (06)
  • [46] Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse
    Ma, Y.
    Chen, L. M.
    Li, M. H.
    Li, Y. F.
    Wang, J. G.
    Tao, M. Z.
    Han, Y. J.
    Zhao, J. R.
    Huang, K.
    Yan, W. C.
    Li, D. Z.
    Chen, Z. Y.
    Ma, J. L.
    Li, Y. T.
    Sheng, Z. M.
    Zhang, J.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (08)
  • [47] WAKEFIELD ACCELERATION BASED ON HIGH POWER PULSED LASERS AND ELECTRON BEAMS (OVERVIEW)
    Onishchenko, L. N.
    [J]. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2006, (02): : 17 - +
  • [48] Production of high-quality electron beams in numerical experiments of laser wakefield acceleration with longitudinal wave breaking
    Tomassini, P
    Galimberti, M
    Giulietti, A
    Giulietti, D
    Gizzi, LA
    Labate, L
    Pegoraro, F
    [J]. PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2003, 6 (12):
  • [49] Effect of the stability of intense laser propagation on the quality of electron beams produced by the wakefield acceleration
    Hafz, N. M.
    Choi, I. W.
    Sung, J. H.
    Kim, H. T.
    Hong, K. -H.
    Jeong, T. M.
    Yu, T. J.
    Noh, Y. -C.
    Ko, D. -K.
    Lee, J.
    [J]. 2007 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1-4, 2007, : 125 - 126
  • [50] Characterization of supersonic and subsonic gas targets for laser wakefield electron acceleration experimentsx
    Lorenz, S.
    Grittani, G.
    Chacon-Golcher, E.
    Lazzarin, C. M.
    Limpouch, J.
    Nawaz, F.
    Nevrkla, M.
    Vilanova, L.
    Levato, T.
    [J]. MATTER AND RADIATION AT EXTREMES, 2019, 4 (01)