Joint Segmentation and Classification of Dialog Acts using Conditional Random Fields

被引:0
|
作者
Zimmermann, Matthias
机构
关键词
speech analysis; dialog acts; segmentation and classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the use of conditional random fields for joint segmentation and classification of dialog acts exploiting both word and prosodic features that are directly available from a speech recognizer. To validate the approach experiments are conducted with two different sets of dialog act types under both reference and speech to text conditions. Although the proposed framework is conceptually simpler than previous attempts at segmentation and classification of DAs it outperforms all previous systems for a task based on the ICSI (MRDA) meeting corpus.
引用
收藏
页码:836 / 839
页数:4
相关论文
共 50 条
  • [41] Dialect classification on printed text using perplexity measure and conditional random fields
    Huang, Rongqing
    Hansen, John H. L.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3, 2007, : 993 - +
  • [42] MULTITEMPORAL CROP TYPE CLASSIFICATION USING CONDITIONAL RANDOM FIELDS AND RAPIDEYE DATA
    Hoberg, T.
    Mueller, S.
    [J]. ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 115 - 121
  • [43] SUPER PIXEL BASED CLASSIFICATION USING CONDITIONAL RANDOM FIELDS FOR HYPERSPECTRAL IMAGES
    Hu, Yang
    Monteiro, Sildomar T.
    Saber, Eli
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2202 - 2205
  • [44] Action unit classification using active appearance models and conditional random fields
    Laurens van der Maaten
    Emile Hendriks
    [J]. Cognitive Processing, 2012, 13 : 507 - 518
  • [45] Combining Watersheds and Conditional Random Fields for Image Classification
    Yang, Yanchai
    Cao, Guitao
    [J]. 2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 805 - 810
  • [46] Learning Conditional Random Fields for Classification of Hyperspectral Images
    Zhong, Ping
    Wang, Runsheng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (07) : 1890 - 1907
  • [47] Classification of Hyperspectral Images Based on Conditional Random Fields
    Hu, Yang
    Saber, Eli
    Monteiro, Sildomar T.
    Cahill, Nathan D.
    Messinger, David
    [J]. IMAGE PROCESSING: MACHINE VISION APPLICATIONS VIII, 2015, 9405
  • [48] Hidden Conditional Ordinal Random Fields for Sequence Classification
    Kim, Minyoung
    Pavlovic, Vladimir
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6322 : 51 - 65
  • [49] CONDITIONAL RANDOM FIELDS FOR THE CLASSIFICATION OF LIDAR POINT CLOUDS
    Niemeyer, J.
    Mallet, C.
    Rottensteiner, F.
    Soergel, U.
    [J]. ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 209 - 214
  • [50] Semi-automatic lymphoma detection and segmentation using fully conditional random fields
    Yu, Yuntao
    Decazes, Pierre
    Lapuyade-Lahorgue, Jerome
    Gardin, Isabelle
    Vera, Pierre
    Ruan, Su
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 70 : 1 - 7