Combined solitons in generalized coupled mode equations of a nonlinear optical Bragg grating

被引:5
|
作者
Alatas, Husin [1 ]
机构
[1] Bogor Agr Univ, Dept Phys, Div Theoret Phys, Bogor 16680, Jawa Barat, Indonesia
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 02期
关键词
D O I
10.1103/PhysRevA.76.023801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the existence of combined dark and antidark soliton forms or combined solitons in the generalized coupled mode equations of a nonlinear optical Bragg grating. These solitons are not allowed in the conventional coupled mode equations with uniform nonlinearity and exist outside the linear grating band gap. Their related Hamiltonian phase portrait was briefly reported by de Sterke [Phys. Rev. E 54, 1969 (1996)]. The explicit expressions for the corresponding solitons are presented, as well as their bifurcation process. We demonstrate the unstable propagation of perturbed combined solitons with zero velocity by means of direct numerical integration.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Dark solitons, breathers, and rogue wave solutions of the coupled generalized nonlinear Schrodinger equations
    Priya, N. Vishnu
    Senthilvelan, M.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [22] Correction to: Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations
    Ibrahim Enam Inan
    Mustafa Inc
    Hadi Rezazadeh
    Lanre Akinyemi
    Optical and Quantum Electronics, 2022, 54
  • [23] Optical solitons in N-coupled higher order nonlinear Schrodinger equations
    Nakkeeran, K
    Porsezian, K
    Sundaram, PS
    Mahalingam, A
    PHYSICAL REVIEW LETTERS, 1998, 80 (07) : 1425 - 1428
  • [24] Correction: Periodic solitons of generalized coupled nonlinear Schrödinger equations with variable coefficients
    W. Yang
    X. P. Cheng
    The European Physical Journal Plus, 139 (11)
  • [25] Bragg grating enhanced nonlinear polarization mode conversion
    Slusher, RE
    Spälter, S
    Eggleton, BJ
    Pereira, S
    Sipe, JE
    BRAGG GRATINGS, PHOTOSENSITIVITY AND POLING IN GLASS WAVEGUIDES, 2000, 33 : 436 - 438
  • [26] Tunneling of solitons in a nonlinear cubic finite-site Bragg grating
    Zakharova, IG
    Karamzin, YN
    Krysanov, BY
    Sukhorukov, AP
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1999, 63 (12): : 2350 - 2354
  • [27] Optical fibre Bragg grating Cladding mode sensors
    Baiad, M. D.
    Gagne, M.
    De Montigny, E.
    Madore, W-J.
    Godbout, N.
    Boudoux, C.
    Kashyap, R.
    FIFTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS, 2013, 8794
  • [28] EXISTENCE OF SOLITONS AND GENERALIZED SOLITONS FOR ONE-DIMENSIONAL NONLINEAR EQUATIONS
    SHVARTS, AS
    THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 24 (03) : 868 - 878
  • [29] Modeling of Coaxial Cable Bragg Grating by Coupled Mode Theory
    Wu, Songping
    Wei, Tao
    Huang, Jie
    Xiao, Hai
    Fan, Jun
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (10) : 2251 - 2259
  • [30] Neural Network Modeling of Optical Solitons Described by Generalized Nonlinear Schrödinger Equations
    S. V. Zavertyaev
    I. A. Moloshnikov
    A. G. Sboev
    M. S. Kuvakin
    Moscow University Physics Bulletin, 2024, 79 (Suppl 2) : S666 - S675