Linear Programming Bounds on the Kissing Number of q-ary Codes

被引:3
|
作者
Sole, Patrick [1 ]
Liu, Yi [2 ]
Cheng, Wei [2 ]
Guilley, Sylvain [2 ,3 ]
Rioul, Olivier [2 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
[2] Telecom Paris, Inst Polytech Paris, LTCI, Palaiseau, France
[3] Secure IC SAS, Tour Montparnasse,33 Ave Maine, F-75015 Paris, France
关键词
D O I
10.1109/ITW48936.2021.9611478
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We use linear programming (LP) to derive upper and lower bounds on the kissing number A(d) of any q-ary linear code C with distance distribution frequencies A(i), in terms of the given parameters [n, k, d]. In particular, a polynomial method gives explicit analytic bounds in a certain range of parameters, which are sharp for some low-rate codes like the first-order Reed-Muller codes. The general LP bounds are more suited to numerical estimates. Besides the classical estimation of the probability of decoding error and of undetected error, we outline recent applications in hardware protection against side-channel attacks using code-based masking countermeasures, where the protection is all the more efficient a s the kissing number is low.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] q-ary graphical codes
    Jungnickel, D
    Vanstone, SA
    [J]. DISCRETE MATHEMATICS, 1999, 208 : 375 - 386
  • [22] A CLASS OF Q-ARY CODES
    SINHA, K
    [J]. DISCRETE MATHEMATICS, 1994, 126 (1-3) : 439 - 440
  • [23] Lower Bounds on the Minimum Pseudodistance for Linear Codes with q-ary PSK Modulation over AWGN
    Skachek, Vitaly
    Flanagan, Mark F.
    [J]. 2008 5TH INTERNATIONAL SYMPOSIUM ON TURBO CODES AND RELATED TOPICS, 2008, : 426 - +
  • [24] New lower bounds on q-ary error-correcting codes
    Laaksonen, Antti
    Ostergard, Patric R. J.
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (05): : 881 - 889
  • [25] BOUNDS ON r-IDENTIFYING CODES IN q-ARY LEE SPACE
    Dhanalakshmi, Ramalingam
    Durairajan, Chinnapillai
    [J]. CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (01) : 53 - 71
  • [26] New lower bounds on q-ary error-correcting codes
    Antti Laaksonen
    Patric R. J. Östergård
    [J]. Cryptography and Communications, 2019, 11 : 881 - 889
  • [27] On the Minimum Length of q-ary Linear Codes of Dimension Five
    TATSUYA MARUTA
    [J]. Geometriae Dedicata, 1997, 65 : 299 - 304
  • [28] On the minimum length of q-ary linear codes of dimension four
    Maruta, T
    [J]. DISCRETE MATHEMATICS, 1999, 208 : 427 - 435
  • [29] On the minimum length of q-ary linear codes of dimension five
    Maruta, T
    [J]. GEOMETRIAE DEDICATA, 1997, 65 (03) : 299 - 304
  • [30] The weight hierarchies of q-ary linear codes of dimension 4
    Hu, Guoxiang
    Chen, Wende
    [J]. DISCRETE MATHEMATICS, 2010, 310 (24) : 3528 - 3536