Anomaly Detection Forest

被引:3
|
作者
Sternby, Jakob [1 ]
Thormarker, Erik [1 ]
Liljenstam, Michael [2 ]
机构
[1] Ericsson AB, Stockholm, Sweden
[2] Ericsson Inc, Los Gatos, CA USA
关键词
D O I
10.3233/FAIA200258
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many applications of anomaly detection, data with labeled anomalies may not be readily available. When designing a system for detection of malicious network activity, for instance, comprehensive malicious data can not be obtained since attacks constantly evolve and hence change their pattern. In such cases, an automatic anomaly detection system needs, at least partly, to rely on one-class learning, where training data exclusively contains normal instances. In this paper, we present a new anomaly detection algorithm, the Anomaly Detection Forest, optimized for the one-class learning problem. The algorithm is an ensemble of binary trees, where each tree is trained on a random subset and where the location of empty leaves define the anomaly score attributed to a data point. Our experimental results on a set with 14 public datasets show that the new algorithm outperforms the state-of-the-art algorithms Isolation Forest and One-Class Random Forest for the task of anomaly detection in the one-class learning setting.
引用
收藏
页码:1507 / 1514
页数:8
相关论文
共 50 条
  • [1] Anomaly Detection with Generalized Isolation Forest
    Downey, Brett E.
    Leung, Carson K.
    Pazdor, Adam G. M.
    Petrillo, Ryan A. L.
    Popov, Denys
    Schneider, Benjamin R.
    [J]. ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 2, AINA 2024, 2024, 200 : 356 - 368
  • [2] Generalized isolation forest for anomaly detection
    Lesouple, Julien
    Baudoin, Cedric
    Spigai, Marc
    Tourneret, Jean-Yves
    [J]. PATTERN RECOGNITION LETTERS, 2021, 149 : 109 - 119
  • [3] Deep Isolation Forest for Anomaly Detection
    Xu, Hongzuo
    Pang, Guansong
    Wang, Yijie
    Wang, Yongjun
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12591 - 12604
  • [4] Distribution Forest: An Anomaly Detection Method Based on Isolation Forest
    Yao, Chengfei
    Ma, Xiaoqing
    Chen, Biao
    Zhao, Xiaosong
    Bai, Gang
    [J]. ADVANCED PARALLEL PROCESSING TECHNOLOGIES (APPT 2019), 2019, 11719 : 135 - 147
  • [5] ANOMALY DETECTION BY USING RANDOM PROJECTION FOREST
    Chen, Fan
    Liu, Zicheng
    Sun, Ming-ting
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1210 - 1214
  • [6] OptIForest: Optimal Isolation Forest for Anomaly Detection
    Xiang, Haolong
    Zhang, Xuyun
    Hu, Hongsheng
    Qi, Lianyong
    Dou, Wanchun
    Dras, Mark
    Beheshti, Amin
    Xu, Xiaolong
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 2379 - 2387
  • [7] Hyperspectral Anomaly Detection With Kernel Isolation Forest
    Li, Shutao
    Zhang, Kunzhong
    Duan, Puhong
    Kang, Xudong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 319 - 329
  • [8] Online Anomaly Detection Using Random Forest
    Zhao, Zhiruo
    Mehrotra, Kishan G.
    Mohan, Chilukuri K.
    [J]. RECENT TRENDS AND FUTURE TECHNOLOGY IN APPLIED INTELLIGENCE, IEA/AIE 2018, 2018, 10868 : 135 - 147
  • [9] A Transductive Forest for Anomaly Detection with Few Labels
    Zhang, Jingrui
    Ninh Pham
    Dobbie, Gillian
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 286 - 301
  • [10] Random Histogram Forest for Unsupervised Anomaly Detection
    Putina, Andrian
    Sozio, Mauro
    Rossi, Dario
    Navarro, Jose M.
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1226 - 1231