Generalized isolation forest for anomaly detection

被引:58
|
作者
Lesouple, Julien [1 ]
Baudoin, Cedric [2 ]
Spigai, Marc [2 ]
Tourneret, Jean-Yves [1 ,3 ]
机构
[1] TeSA, 7 Blvd Gare, F-31000 Toulouse, France
[2] Thales Alenia Space, 26 Ave Jean Francois Champollion, F-31100 Toulouse, France
[3] Univ Toulouse, INP ENSEEIHT IRIT, 2 Rue Charles Camichel, F-31071 Toulouse, France
关键词
Anomaly detection; Isolation forest; DENSITY; SUPPORT;
D O I
10.1016/j.patrec.2021.05.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter introduces a generalization of Isolation Forest (IF) based on the existing Extended IF (EIF). EIF has shown some interest compared to IF being for instance more robust to some artefacts. However, some information can be lost when computing the EIF trees since the sampled threshold might lead to empty branches. This letter introduces a generalized isolation forest algorithm called Generalized IF (GIF) to overcome these issues. GIF is faster than EIF with a similar performance, as shown in several simulation results associated with reference databases used for anomaly detection. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 50 条
  • [1] Anomaly Detection with Generalized Isolation Forest
    Downey, Brett E.
    Leung, Carson K.
    Pazdor, Adam G. M.
    Petrillo, Ryan A. L.
    Popov, Denys
    Schneider, Benjamin R.
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 2, AINA 2024, 2024, 200 : 356 - 368
  • [2] Deep Isolation Forest for Anomaly Detection
    Xu, Hongzuo
    Pang, Guansong
    Wang, Yijie
    Wang, Yongjun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12591 - 12604
  • [3] OptIForest: Optimal Isolation Forest for Anomaly Detection
    Xiang, Haolong
    Zhang, Xuyun
    Hu, Hongsheng
    Qi, Lianyong
    Dou, Wanchun
    Dras, Mark
    Beheshti, Amin
    Xu, Xiaolong
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 2379 - 2387
  • [4] Hyperspectral Anomaly Detection With Kernel Isolation Forest
    Li, Shutao
    Zhang, Kunzhong
    Duan, Puhong
    Kang, Xudong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (01): : 319 - 329
  • [5] ISOLATION FOREST FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Zhang, Kunzhong
    Kang, Xudong
    Li, Shutao
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 437 - 440
  • [6] Distribution Forest: An Anomaly Detection Method Based on Isolation Forest
    Yao, Chengfei
    Ma, Xiaoqing
    Chen, Biao
    Zhao, Xiaosong
    Bai, Gang
    ADVANCED PARALLEL PROCESSING TECHNOLOGIES (APPT 2019), 2019, 11719 : 135 - 147
  • [7] Leveraging an Isolation Forest to Anomaly Detection and Data Clustering
    Yepmo, Veronne
    Smits, Gregory
    Lesot, Marie -Jeanne
    Pivert, Olivier
    DATA & KNOWLEDGE ENGINEERING, 2024, 151
  • [8] Anomaly Detection in Streaming Data using Isolation Forest
    Kareem, Mohammed Shaker
    Muhammed, Lamia AbedNoor
    PROCEEDINGS 2024 SEVENTH INTERNATIONAL WOMEN IN DATA SCIENCE CONFERENCE AT PRINCE SULTAN UNIVERSITY, WIDS-PSU 2024, 2024, : 223 - 228
  • [9] Anomaly Detection in Semiconductor Cleanroom Using Isolation Forest
    Jahan, Israt
    Alam, Md Morshed
    Ahmed, Md Faisal
    Jang, Yeong Min
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 795 - 797
  • [10] Isolation Mondrian Forest for Batch and Online Anomaly Detection
    Ma, Haoran
    Ghojogh, Benyamin
    Samad, Maria N.
    Zheng, Dongyu
    Crowley, Mark
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3051 - 3058